It has previously been shown that the presence of Aggregatibacter actinomycetemcomitans in subgingival plaque is significantly associated with increased risk for clinical attachment loss. The highly leukotoxic JP2 genotype of this bacterium is frequently detected in adolescents with aggressive forms of periodontitis. The aims of the study were to quantify the levels of JP2 and non‐JP2 genotypes of A. actinomycetemcomitans in saliva of Moroccan adolescents with the JP2 genotype earlier detected in the subgingival plaque. The salivary concentrations of inflammatory proteins were quantified and linked to the clinical parameters and microbial findings. Finally, a mouth rinse with leukotoxin‐neutralizing effect was administrated and its effect on the levels the biomarkers and A. actinomycetemcomitans examined. The study population consisted of 22 adolescents that previously were found to be positive for the JP2 genotype in subgingival plaque. Periodontal registration and sampling of stimulated saliva was performed at baseline. A mouth rinse (active/placebo) was administrated, and saliva sampling repeated after 2 and 4 weeks rinse. The salivary levels of JP2 and non‐JP2 were analyzed by quantitative PCR and inflammatory proteins by ELISA. Both the JP2 and the non‐JP2 genotype were detected in all individuals with significantly higher levels of the non‐JP2. Enhanced levels of the JP2 genotype of A. actinomycetemcomitans was significantly correlated to the presence of attachment loss (≥3 mm). Salivary concentrations of inflammatory biomarkers did not correlate to periodontal condition or levels of A. actinomycetemcomitans . The use of active or placebo leukotoxin‐neutralizing mouth rinse did not significantly interfered with the levels of these biomarkers. Saliva is an excellent source for detection of A. actinomycetemcomitans on individual basis, and high levels of the JP2 genotype were significantly associated with the presence of clinical attachment loss.
Introduction:The use of medicinal plants was a very spread therapeutic way. At present, several studies are moving toward this ancestral option, seen the emergence of several bacterial resistance and for the large number of side effects of some synthetic drugs.Objective:The objective of this study was to collect and evaluate information on medicinal plants commonly used in five Moroccan cities: Rabat, Salé, Témara, Khémisset, and Tiflet for the management of halitosis.Methods:This is a cross-sectional survey; conducted among 171 herbalists. The tool of the study was a questionnaire filled by herbalists. SPSS in its version 13 was used for statistical calculations. Quantitative variables were expressed as a mean and standard deviation. Categorical variables were expressed as numbers and percentage.Results:Analysis of the results of this study identified 23 plants that are used the most. The herbal knowledge herbalists prescribed on the toxicity of plants and their side effects were appreciated.Conclusions:Preliminary results presented in this work allow knowing the plants used by this population. This data could be the basis for experimental and clinical studies to promote the use of natural agents in the treatment of bad breath.
Over a 4-year study period from 2015 to 2018, altogether 183 isolates of bacterial meningitis were collected from 12 hospitals covering the entire Moroccan territory. Neisseria meningitidis represented 58.5%, Streptococcus pneumoniae 35.5%, and Haemophilus influenzae type b 6%. H. influenzae type b mainly affected 5-year-olds and unvaccinated adults. N. meningitidis serogroup B represented 90.7% followed by serogroup W135 with 6.5%. Decreased susceptibility to penicillin G (DSPG) for all isolates accounted for 15.7%, with 11.6% being resistant to penicillin G (PG) and 4.1% decreased susceptibility. Cumulative results of all strains showed 2.7% decreased susceptibility to amoxicillin and 3.3% resistant, 2.2% of isolates were resistant to third-generation cephalosporin and 2.2% were decreased susceptible, 5.5% were resistant to chloramphenicol and 2.7% were resistant to rifampin. The frequency of DSPG observed in our study is more common in S. pneumoniae than in N. meningitidis (P < 0.05). These isolates have been found to be highly susceptible to antibiotics used for treatment and prophylaxis chemotherapy and the observed resistance remains rare. The impact of introduction of conjugate vaccines against H. influenzae type b and S. pneumoniae (PCVs) is an advantage in reducing meningitis cases due to these two species.
In this study, the essential oil of Origanum vulgare was evaluated for putative antibacterial activity against six clinical strains and five reference strains of Aggregatibacter actinomycetemcomitans, in comparison with some antimicrobials. The chemical composition of the essential oil was analyzed, using chromatography (CG) and gas chromatography–mass spectrometry coupled (CG–MS). The major compounds in the oil were Carvacrol (32.36%), α-terpineol (16.70%), p-cymene (16.24%), and Thymol (12.05%). The antimicrobial activity was determined by an agar well diffusion test. A broth microdilution method was used to study the minimal inhibitory concentration (MIC). The minimal bactericidal concentration (MBC) was also determined. The cytotoxicity of the essential oil (IC50) was <125 µg/mL for THP-1 cells, which was high in comparison with different MIC values for the A. actinomycetemcomitans strains. O. vulgare essential oil did not interfere with the neutralizing capacity of Psidium guajava against the A. actinomycetemcomitans leukotoxin. In addition, it was shown that the O. vulgare EO had an antibacterial effect against A. actinomycetemcomitans on a similar level as some tested antimicrobials. In view of these findings, we suggest that O.vulgare EO may be used as an adjuvant for prevention and treatment of periodontal diseases associated to A. actinomycetemcomitans. In addition, it can be used together with the previously tested leukotoxin neutralizing Psidium guajava.
The present study aimed to determine the phenolic compounds of Aristolochia longa root extracts and to evaluate their antibacterial activities on multiresistant strains. Phytochemical analysis revealed the presence of flavonoids, tannins, terpenoids, and alkaloids. The HPLC-DAD analysis of A. longa extracts showed the presence of several major bioactive compounds such as ferulic acid, 4-hydroxycinnamic acid, citric acid, and quinic acid. The agar diffusion method was used for the sensitivity test, while minimal inhibitory concentration (MIC) and minimal bactericidal concentration values were determined by microdilution assay. Different tests were carried out on 3 clinical multiresistant strains and 3 reference strains. The diameter of inhibition of Staphylococcus aureus ATCC 25923 induced by the ethyl acetate fraction at 200 mg/mL was 25 ± 1 mm. Moreover, Escherichia coli ATCC 29522 showed a great sensitivity toward all the concentrations tested. The MICs of the active extracts vary between 12.5 and 100 mg/mL with a bacteriostatic effect on Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis, and S. aureus ATCC 25923.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.