It is unknown whether adipokines derived from adipose tissues modulate endoplasmic reticulum (ER) stress induced in obesity. Here, we show that visceral adipose tissue–derived serine protease inhibitor (vaspin) binds to cell-surface 78-kDa glucose-regulated protein (GRP78), which is recruited from ER to plasma membrane under ER stress. Vaspin transgenic mice were protected from diet-induced obesity, glucose intolerance, and hepatic steatosis, while vaspin-deficient mice developed glucose intolerance associated with upregulation of ER stress markers. With tandem affinity tag purification using HepG2 cells, we identified GRP78 as an interacting molecule. The complex formation of vaspin, GRP78, and murine tumor cell DnaJ-like protein 1 (MTJ-1) (DnaJ homolog, subfamily C, member 1) on plasma membrane was confirmed by cell-surface labeling with biotin and immunoprecipitation in liver tissues and H-4-II-E-C3 cells. The addition of recombinant human vaspin in the cultured H-4-II-E-C3 cells also increased the phosphorylation of Akt and AMP-activated protein kinase (AMPK) in a dose-dependent manner, and anti-GRP78 antibodies completely abrogated the vaspin-induced upregulation of pAkt and pAMPK. Vaspin is a novel ligand for cell-surface GRP78/MTJ-1 complex, and its subsequent signals exert beneficial effects on ER stress–induced metabolic dysfunctions.
Rationale: Visceral adipose tissue-derived serine proteinase inhibitor (vaspin) is an adipokine identified from visceral adipose tissues of genetically obese rats. Objective: The role of vaspin in the diabetic vascular complications remains elusive, and we investigated the effects of vaspin on the vascular function under the diabetic milieu. Methods and Results: Adenovirus carrying the full length of the vaspin gene (Vaspin-Ad) ameliorated intimal proliferation of balloon-injured carotid arteries in diabetic Wistar rats. The expression of Ccl2, Pdgfb, and Pdgfrb genes was significantly reduced by the treatment of Vaspin-Ad. In cuff-injured femoral arteries, the intimal proliferation was ameliorated in vaspin transgenic (Vaspin Tg) mice. The application of recombinant vaspin and Vaspin-Ad promoted the proliferation and inhibited the apoptosis of human aortic endothelial cells. Adenovirus expressing vaspin with calmodulin and streptavidin-binding peptides was applied to human aortic endothelial cells, subjected to tandem tag purification and liquid chromatography-tandem mass spectrometry, and we identified GRP78 (78-kDa glucose-regulated protein) as an interacting molecule. The complex formation of vaspin, GRP78, and voltage-dependent anion channel on the plasma membrane was confirmed by the immunoprecipitation studies using aortas of Vaspin Tg mice. The binding assay using 125 I-vaspin in human aortic endothelial cells revealed high-affinity binding (dissociation constant = 0.565×10 –9 m) by the treatment of 5 μM thapsigargin, which recruited GRP78 from the endoplasmic reticulum to plasma membrane by inducing endoplasmic reticulum stress. In human aortic endothelial cells, vaspin induced phosphorylation of Akt and inhibited the kringle 5-induced Ca 2+ influx and subsequent apoptosis. Conclusions: Vaspin is a novel ligand for the cell-surface GRP78/voltage-dependent anion channel complex in endothelial cells and promotes proliferation, inhibits apoptosis, and protects vascular injuries in diabetes mellitus.
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Gpnmb is classified as a type 1 membrane protein and its soluble form is secreted by ADAM10-mediated cleavage. Gpnmb mRNA was found in the Kupffer cells and white adipose tissues (WATs) and its upregulation in obesity was recently found. Here, we generated aP2 promoter-driven Gpnmb transgenic (Tg) mice and the overexpression of Gpnmb ameliorated the fat accumulation and fibrosis of the liver in diet-induced obesity model. Soluble form of Gpnmb in sera was elevated in Gpnmb Tg mice and Gpnmb concentrated in hepatic macrophages and stellate cells interacted with calnexin, which resulted in the reduction of oxidative stress. In the patients with non-alcoholic steatohepatitis, serum soluble GPNMB concentrations were higher compared with the patients with simple steatosis. The GPNMB is a promising biomarker and therapeutic target for the development and progression of NAFLD in obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.