Accurate Calcium Oxalate Monohydrate (COM) solubility measurements are essential for elucidating the physiochemical mechanism behind the formation of kidney stones, nephrolithiasis. Yet the reported solubility values of COM in ultrapure water, arguably the simplest solvent relevant for nephrolithiasis, vary significantly depending on implemented method. To address this variation, we present an experimental study of the solubility of COM validated by a model based on the Debye–Hückel theory describing the solution chemistry and the complex formation. We also carefully monitor potential pseudopolymorphic/hydrate transitions during the solubility measurements with in-situ and ex-situ methods. Our results indicate that the solubility of COM in ultrapure water is a weak function of temperature. However, the measured solubility varies significantly in buffer solutions across physiologically relevant pH values at body temperature. The proposed model explains observed trends as a combined effect of ionic strength, protonation reactions, and soluble complex formation. Moreover, it predicts solubility of COM in buffer solutions remarkably well using our measurements in ultrapure water as input, demonstrating the consistency of presented approach. The presented study parleying experiments and modelling provides a solid stepping stone to extend the physiochemical understanding of nephrolithiasis to more realistic solutions laden with biological complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.