Abstract. Reduction in scattering, high absorption, and spectral features of tissue constituents above 1000 nm could help in gaining higher spatial resolution, penetration depth, and specificity for in vivo studies, opening possibilities of near-infrared diffuse optics in tissue diagnosis. We present the characterization of collagen absorption over a broadband range (500 to 1700 nm) and compare it with spectra presented in the literature. Measurements were performed using a time-domain diffuse optical technique. The spectrum was extracted by carefully accounting for various spectral distortion effects, due to sample and system properties. The contribution of several tissue constituents (water, lipid, collagen, oxy, and deoxy-hemoglobin) to the absorption properties of a collagen-rich in vivo bone location, such as radius distal in the 500-to 1700-nm wavelength region, is also discussed, suggesting bone diagnostics as a potential area of interest.
We report on the design, development, and performance assessment of a portable time resolved system measuring absorption and scattering spectra of highly diffusive media over the 600-1350 nm range. In view of clinical use, two strategies were implemented; the first one equips the system with high responsivity in key tissue absorbing regions, whereas the second one makes the system immune to time drift. The MEDPHOT protocol was used for the performance assessment of the instrument. Finally, the system was enrolled into its first in vivo trial phase, measuring the broadband absorption and scattering spectra of human manubrium, abdomen fat tissues, and forehead for the in vivo quantification of key tissue constituents.
We present a systematic characterization of the optical properties (µ a and µ s ') of nine representative ex vivo porcine tissues over a broadband spectrum (650-1100 nm). We applied time-resolved diffuse optical spectroscopy measurements for recovering the optical properties of porcine tissues depicting a realistic representation of the tissue heterogeneity and morphology likely to be found in different ex vivo tissues. The results demonstrate a large spectral and inter-tissue variation of optical properties. The data can be exploited for planning or simulating ex vivo experiments with various biophotonics techniques, or even to construct artificial structures mimicking specific pathologies exploiting the wide assortment in optical properties.
Diffuse correlation spectroscopy (DCS), combined with time-resolved reflectance spectroscopy (TRS) or frequency domain spectroscopy, aims at path length (i.e. depth) resolved, non-invasive and simultaneous assessment of tissue composition and blood flow. However, while TRS provides a path length resolved data, the standard DCS does not. Recently, a time domain DCS experiment showed path length resolved measurements for improved quantification with respect to classical DCS, but was limited to phantoms and small animal studies. Here, we demonstrate time domain DCS for studies on the adult forehead and the arm. We achieve path length resolved DCS by means of an actively mode-locked Ti:Sapphire laser that allows high coherence pulses, thus enabling adequate signal-to-noise ratio in relatively fast (~1 s) temporal resolution. This work paves the way to the translation of this approach to practical use.
We present a tissue mimicking optical phantom recipe to create robust well tested solid phantoms. The recipe consists of black silicone pigment (absorber), silica microspheres (scatterer) and silicone rubber (SiliGlass, bulk material). The phantom recipe was characterized over a broadband spectrum (600-1100 nm) for a wide range of optical properties (absorption 0.1-1 cm −1 , reduced scattering 5-25 cm −1 ) that are relevant to human organs. The results of linearity show a proper scaling of optical properties as well as the absence of coupling between the absorber and scatterer at different concentrations. A reproducibility of 4% among different preparations was obtained, with a similar grade of spatial homogeneity. Finally, a 3D non-scattering mock-up phantom of an infant torso made with the same recipe bulk material (SiliGlass) was presented to project the futuristic aspect of our work that is 3D printing human organs of biomedical relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.