Mitochondria are a key pharmacological target in all cancer cells, since the structure and function of this organelle is different between healthy and malignant cells. Oxidative damage, disruption of mitochondrial ATP synthesis, calcium dyshomeostasis, mtDNA damage, and induction of the mitochondrial outer membrane permeabilization (MOMP) lead to the mitochondrial dysfunctionality and increase the probability of the programmed cell death or apoptosis. A variety of the signaling pathways have been developed to promote cell death including overexpression of pro-apoptotic members of Bcl-2 family, overloaded calcium, and elevated reactive oxygen species (ROS) play a key role in the promoting mitochondrial cytochrome c release through MOMP and eventually leads to cell death. There are a wide range of the therapeutic-based peptide drugs, known mitochondrial targeted peptides (MTPs), which specifically target mitochondrial pathways into death. They have prominent advantages such as low toxicity, high specificity, and easy to synthesis. Some of these therapeutic peptides have shown to increased the clinical activity alone or in combination with other agents. In this review, we will outline the biological properties of MTPs for cancer therapy. Understanding the molecular mechanisms and signaling pathways controlling cell death by MTPs can be critical for the development of the therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Whereas several anticancer peptides are in different stages of clinical development, their administration is limited by the fast elimination from the systemic circulation. Peptide loading on nano-carriers can pave the way for their future application. We have recently indicated that a disulfide loop rather than a Zn-binding loop improves the anti-angiogenic and antitumor activities of the N-terminal fragment of endostatin. In this study, chitosan nanoparticles (CS NPs) are used for the controlled release of the engineered peptide. Loading of the peptide into CS NPs using the ionic gelation method was confirmed by FTIR and resulted in final particle size, poly-dispersity index and surface charge of 186.5 ± 24.0 nm, 0.26 ± 0.02 and 20.1 ± 0.4 mV respectively. The SEM morphological analysis revealed spherical particles with an average size of 80 ± 5 nm. Peptide loading studies revealed that CS NPs are able to adsorb the peptide as ~70%. The release measurements indicated an initial burst release by 49% after 2 hr and complete release after 80 hr. According to in vitro studies, the loaded peptide was much more toxic for endothelial cells than different cancer cell lines. These results underscore the promise of CS NPs as therapeutics nanosystems and open a perspective for improving the clinical applications of peptide drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.