Mitochondria are a key pharmacological target in all cancer cells, since the structure and function of this organelle is different between healthy and malignant cells. Oxidative damage, disruption of mitochondrial ATP synthesis, calcium dyshomeostasis, mtDNA damage, and induction of the mitochondrial outer membrane permeabilization (MOMP) lead to the mitochondrial dysfunctionality and increase the probability of the programmed cell death or apoptosis. A variety of the signaling pathways have been developed to promote cell death including overexpression of pro-apoptotic members of Bcl-2 family, overloaded calcium, and elevated reactive oxygen species (ROS) play a key role in the promoting mitochondrial cytochrome c release through MOMP and eventually leads to cell death. There are a wide range of the therapeutic-based peptide drugs, known mitochondrial targeted peptides (MTPs), which specifically target mitochondrial pathways into death. They have prominent advantages such as low toxicity, high specificity, and easy to synthesis. Some of these therapeutic peptides have shown to increased the clinical activity alone or in combination with other agents. In this review, we will outline the biological properties of MTPs for cancer therapy. Understanding the molecular mechanisms and signaling pathways controlling cell death by MTPs can be critical for the development of the therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
(1) Background: Periodontal diseases are a global health concern. They are multi-stage, progressive inflammatory diseases triggered by the inflammation of the gums in response to periodontopathogens and may lead to the destruction of tooth-supporting structures, tooth loss, and systemic health problems. This systematic review and meta-analysis evaluated the effects of probiotic supplementation on the prevention and treatment of periodontal disease based on the assessment of clinical, microbiological, and immunological outcomes. (2) Methods: This study was registered under PROSPERO (CRD42021249120). Six databases were searched: PubMed, MEDLINE, EMBASE, CINAHL, Web of Science, and Dentistry and Oral Science Source. The meta-analysis assessed the effects of probiotic supplementation on the prevention and treatment of periodontal diseases and reported them using Hedge’s g standardized mean difference (SMD). (3) Results: Of the 1883 articles initially identified, 64 randomized clinical trials were included in this study. The results of this meta-analysis indicated statistically significant improvements after probiotic supplementation in the majority of the clinical outcomes in periodontal disease patients, including the plaque index (SMD = 0.0.557, 95% CI: 0.228, 0.885), gingival index, SMD = 0.920, 95% CI: 0.426, 1.414), probing pocket depth (SMD = 0.578, 95% CI: 0.365, 0.790), clinical attachment level (SMD = 0.413, 95% CI: 0.262, 0.563), bleeding on probing (SMD = 0. 841, 95% CI: 0.479, 1.20), gingival crevicular fluid volume (SMD = 0.568, 95% CI: 0.235, 0.902), reduction in the subgingival periodontopathogen count of P. gingivalis (SMD = 0.402, 95% CI: 0.120, 0.685), F. nucleatum (SMD = 0.392, 95% CI: 0.127, 0.658), and T. forsythia (SMD = 0.341, 95% CI: 0.050, 0.633), and immunological markers MMP-8 (SMD = 0.819, 95% CI: 0.417, 1.221) and IL-6 (SMD = 0.361, 95% CI: 0.079, 0.644). (4) Conclusions: The results of this study suggest that probiotic supplementation improves clinical parameters, and reduces the periodontopathogen load and pro-inflammatory markers in periodontal disease patients. However, we were unable to assess the preventive role of probiotic supplementation due to the paucity of studies. Further clinical studies are needed to determine the efficacy of probiotic supplementation in the prevention of periodontal diseases.
Low-level laser therapy (LLLT) is a form of photon therapy which can be a non-invasive therapeutic procedure in cancer therapy using low-intensity light in the range of 450-800 nm. One of the main functional features of laser therapy is the photobiostimulation effects of low-level lasers on various biological systems including altering DNA synthesis and modifying gene expression, and stopping cellular proliferation. This study investigated the effects of LLLT on mice mammary tumor and the expression of Let-7a, miR155, miR21, miR125, and miR376b in the plasma and tumor samples. Sixteen mice were equally divided into four groups including control, and blue, green, and red lasers at wavelengths of 405, 532, and 632 nm, respectively. Weber Medical Applied Laser irradiation was carried out with a low power of 1-3 mW and a series of 10 treatments at three times a week after tumor establishment. Tumor volume was weekly measured by a digital vernier caliper, and qRT-PCR assays were performed to accomplish the study. Depending on the number of groups and the p value of the Kolmogorov-Smirnov test of normality, a t test, a one-way ANOVA, or a non-parametric test was used for data analyses, and p < 0.05 was considered to be statistically significant. The average tumor volume was significantly less in the treated blue group than the control group on at days 21, 28, and 35 after cancerous cell injection. Our data also showed an increase of Let-7a and miR125a expression and a decrease of miR155, miR21, and miR376b expression after LLLT with the blue laser both the plasma and tumor samples compared to other groups. It seems that the non-invasive nature of laser bio-stimulation can make LLLT an attractive alternative therapeutic tool.
The expression of microRNAs (miRNAs), as novel biomarkers, is subject to change in many cancers. Therefore, the overall profile of miRNAs can be used for detection of cancer type, response to therapies, pathological variables, and other factors related to the disease. In this study, to evaluate miRNA expression associated with the tumor progression and response to treatment, 60 BALB/c mice received subcutaneous injections of 4T1 cells. The study includes ten groups: one group as control, six groups were euthanized at different time points to assess the role of miRNA expression in the tumor progression, and three groups received chemotherapy, radiotherapy, and surgery to evaluate miRNA expression in response to treatment. MicroRNAs were extracted from the breast tumor and the plasma samples, and their relative expressions were quantified using qRT-PCR. MiR-155 expression was increased in the plasma in the early weeks after the cell injection but decreased in the plasma after surgery and radiotherapy and also in tumor samples after chemotherapy and radiotherapy. MiR-10b expression was increased in the late weeks both in the plasma and the tumor and was decreased in the plasma after radiotherapy and surgery and in the tumor after radiotherapy. MiR-21 expression was increased in the plasma and the tumor tissue during the disease progression at the third and the fourth weeks following tumor induction but was decreased in the plasma in all the therapy groups. Interestingly, miR-125a showed a significant decrease during the tumor progression, and its expression was increased after the treatment. Our results showed that the candidate miRNAs could be divided into two groups of oncomiRs and tumor suppressor miR based on their deregulation after tumor growth and treatments. It seems that the oncomiRs in the plasma can be an ideal noninvasive candidate biomarker for the early detection of breast cancer and also for following the response of the common therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.