Broad aperture semiconductor lasers usually suffer from low spatial quality of the emitted beams. Due to the highly compact character of such lasers the use of a conventional intra-cavity spatial filters is problematic. We demonstrate that extremely compact Photonic Crystal spatial filters, incorporated into the laser resonator, can improve the beam spatial quality, and correspondingly, increase the brightness of the emitted radiation. We report the decrease of the M 2 from 47 down to 28 due to Photonic Crystal spatial intra-cavity filtering, and the increase of the brightness by a factor of 1.5, giving a proof of principle of intra-cavity Photonic Crystal spatial filtering in broad area semiconductor lasers.
Abstract:In the present paper we show the optoacoustic (OA) response of two solutions of gold nanorods dispersed in distilled water (0.8 mg/ml) and hosted in tissue-like phantoms by using small arrays of HPDLs at 870 and 905 nm as excitation sources. The HPDLs are coupled to a 7-to-1 optical fiber bundle with output diameter of 675 μm. Each solution of gold nanorods exhibits an absorption peak close to the operating wavelength, i.e. ~860 nm and ~900 nm, respectively, to optimize the generation of OA signals. The phantoms are made of agar, intralipid and hemoglobin to simulate a soft biological tissue with reduced properties of scattering. Three 3-mm diameter tubes done in the phantoms at different depths (0.9 cm, 1.8 cm, and 2.7 cm) have been filled with gold nanorods. In this way, OA signals with appreciable SNR are generated at different depths in the phantoms. The high OA response exhibited by gold nanorods suggests their application in OA spectroscopy as exogenous contrast agents to detect and monitor emerging diseases like metastasis and arteriosclerotic plaques.
In this work, we report an experimental and numerical study of the intracavity spatial filtering in edge-emitting lasers using a chirped photonic crystal (PhC) as the filtering element in the near-field domain. We provide a comprehensive analysis of the near-field PhC filtering scheme and compare it to conventional spatial filtering using a variable width slit in the far-field domain. Using a two-dimensional chirped PhC as a spatial filter, we experimentally demonstrate a brightness enhancement by a factor of 1.3, considering an edge-emitting laser with a 1.5 mm cavity length, consistent with a numerical prediction of brightness enhanced by a factor of 1.7. The experimental results are theoretically confirmed by numerical integration of a spatio-temporal model of the edge-emitting laser. Furthermore, numerical results show that brightness can be further increased over a factor of 2, applying optimized spatial-filtering elements at both the front and rear facets of the lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.