Gastric cancer is the third leading cause of cancer-related mortality worldwide. Despite progress in understanding its development, challenges with treatment remain. Gastrin, a peptide hormone, is trophic for normal gastrointestinal epithelium. Gastrin also has been shown to play an important role in the stimulation of growth of several gastrointestinal cancers including gastric cancer. We sought to review the role of gastrin and its pathway in gastric cancer and its potential as a therapeutic target in the management of gastric cancer. In the normal adult stomach, gastrin is synthesized in the G cells of the antrum; however, gastrin expression also is found in many gastric adenocarcinomas of the stomach corpus. Gastrin’s actions are mediated through the G-protein–coupled receptor cholecystokinin-B (CCK-B) on parietal and enterochromaffin cells of the gastric body. Gastrin blood levels are increased in subjects with type A atrophic gastritis and in those taking high doses of daily proton pump inhibitors for acid reflux disease. In experimental models, proton pump inhibitor–induced hypergastrinemia and infection with Helicobacter pylori increase the risk of gastric cancer. Understanding the gastrin:CCK-B signaling pathway has led to therapeutic strategies to treat gastric cancer by either targeting the CCK-B receptor with small-molecule antagonists or targeting the peptide with immune-based therapies. In this review, we discuss the role of gastrin in gastric adenocarcinoma, and strategies to block its effects to treat those with unresectable gastric cancer.
The gastrointestinal peptide cholecystokinin (CCK) is released from the duodenum in response to dietary fat to aid in digestion, and plasma CCK levels are elevated with the consumption of high-fat diets. CCK is also a trophic peptide for the pancreas and has also been shown to stimulate growth of pancreatic cancer. In the current investigation, we studied the influence of a diet high in saturated fat on the growth of pancreatic cancer in syngeneic murine models before the mice became obese to exclude the confounding factors associated with obesity. The high-fat diet significantly increased growth and metastasis of pancreatic cancer compared with the control diet, and the stimulatory effect was blocked by the CCK-receptor antagonist proglumide. We then selectively knocked out the CCK receptor on the pancreatic cancer cells using clustered regularly interspaced short palindromic repeats technology and showed that without CCK-receptors, dietary fat was unable to stimulate cancer growth. We next demonstrated that dietary fat failed to influence pancreatic cancer xenograft growth in genetically engineered CCK peptide knockout mice. The tumor-associated fibrosis that is so prevalent in the pancreatic cancer microenvironment was significantly decreased with CCK-receptor antagonist therapy because fibroblasts also have CCK receptors. The CCK-receptor antagonist proglumide also altered tumor metalloprotease expression and increased tumor suppressor genes by a PCR array. Our studies confirm that a diet high in saturated fat promotes growth of pancreatic cancer and the action is mediated by the CCK-receptor pathway. NEW & NOTEWORTHY Diets high in long-chain saturated fats promote growth of pancreatic cancer independent of obesity. The mechanism through which dietary fat promotes cancer is mediated through the cholecystokinin (CCK) receptor pathway. Therapy with a CCK-receptor antagonist altered the tumor microenvironment by reducing fibrosis, increasing cluster of differentiation 8 lymphocytes, increasing tumor suppressor genes, and thus decreasing metastases. Use of CCK-receptor antagonist therapy with standard chemotherapy for pancreatic cancer may improve response by altering the tumor microenvironment.
ObjectiveWe assessed whether famotidine improved inflammation and symptomatic recovery in outpatients with mild to moderate COVID-19.DesignRandomised, double-blind, placebo-controlled, fully remote, phase 2 clinical trial (NCT04724720) enrolling symptomatic unvaccinated adult outpatients with confirmed COVID-19 between January 2021 and April 2021 from two US centres. Patients self-administered 80 mg famotidine (n=28) or placebo (n=27) orally three times a day for 14 consecutive days. Endpoints were time to (primary) or rate of (secondary) symptom resolution, and resolution of inflammation (exploratory).ResultsOf 55 patients in the intention-to-treat group (median age 35 years (IQR: 20); 35 women (64%); 18 African American (33%); 14 Hispanic (26%)), 52 (95%) completed the trial, submitting 1358 electronic symptom surveys. Time to symptom resolution was not statistically improved (p=0.4). Rate of symptom resolution was improved for patients taking famotidine (p<0.0001). Estimated 50% reduction of overall baseline symptom scores were achieved at 8.2 days (95% CI: 7 to 9.8 days) for famotidine and 11.4 days (95% CI: 10.3 to 12.6 days) for placebo treated patients. Differences were independent of patient sex, race or ethnicity. Five self-limiting adverse events occurred (famotidine, n=2 (40%); placebo, n=3 (60%)). On day 7, fewer patients on famotidine had detectable interferon alpha plasma levels (p=0.04). Plasma immunoglobulin type G levels to SARS-CoV-2 nucleocapsid core protein were similar between both arms.ConclusionsFamotidine was safe and well tolerated in outpatients with mild to moderate COVID-19. Famotidine led to earlier resolution of symptoms and inflammation without reducing anti-SARS-CoV-2 immunity. Additional randomised trials are required.
Background and Aims Nonalcoholic steatohepatitis (NASH) is a common inflammatory liver condition that may lead to cirrhosis and hepatocellular carcinoma (HCC). Risk factors for NASH include a saturated fat diet, altered lipid metabolism, and genetic and epigenetic factors, including microRNAs. Serum levels of cholecystokinin (CCK) are elevated in mice and humans that consume a high-saturated fat diet. CCK receptors (CCK-Rs) have been reported on fibroblasts which when activated can induce fibrosis; however, their role in hepatic fibrosis remains unknown. We hypothesized that elevated levels of CCK acting on the CCK-Rs play a role in the development of NASH and in NASH-associated HCC. Methods We performed a NASH Prevention study and Reversal study in mice fed a saturated fat 75% choline-deficientethionine-supplemented (CDE) diet for 12 or 18 weeks. In each study, half of the mice received untreated drinking water, while the other half received water supplemented with the CCK-R antagonist proglumide. CCK-R expression was evaluated in mouse liver and murine HCC cells. Results CCK receptor antagonist treatment not only prevented NASH but also reversed hepatic inflammation, fibrosis, and steatosis and normalized hepatic transaminases after NASH was established. Thirty-five percent of the mice on the CDE diet developed HCC compared with none in the proglumide-treated group. We found that CCK-BR expression was markedly upregulated in mouse CDE liver and HCC cells compared with normal hepatic parenchymal cells, and this expression was epigenetically regulated by microRNA-148a. Conclusion These results support the novel role of CCK receptors in the pathogenesis of NASH and HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.