In settings of high maternal syphilis prevalence, on-site antenatal screening with ICS is a cost-effective approach to reduce the incidence of congenital syphilis.
BackgroundApart from localized gastrointestinal infections, Escherichia coli and Salmonella species are major causes of systemic disease in both humans and animals. Salmonella spp. cause invasive infections such as enteric fever, septicemia, osteomyelitis and meningitis while certain types of E. coli can cause systemic infections, includingpyelonephritis, meningitis and septicemia. These characteristic requires the involvement of a myriad of virulence factors.MethodsThis study investigated the virulence factors of Escherichia coli and Salmonella species in clinical specimens from patients with diarrhoea presenting to health care centres in Oliver R. Tambo District Municipality, Eastern Cape Province, Republic of South Africa. Microbiology analysis involved the use of cultural and molecular techniques.ResultsOut of a total of 315 samples screened, Salmonella isolates were obtained in 119 (37.8%) of cases and these comprised: S. choleraesuis (6%), S. enteritidis (4%), S. eppendorf (1%), S. hadar (1%), S. isangi (8%), S. panama (1%), S. typhi (52%), S. typhimurium (25%) and untyped Salmonella spp. (2%). Among the Salmonella species 87 (73.1%) were invasive. Using molecular diagnostic methods, diarrheagenic E. coli were detected in 90 cases (28.6%): the greater proportion of this were enteroaggregative E. coli (EAEC) 37 (41.1%), enteropathogenic E. coli (EPEC) 21 (23.3%) and enterohemorrhagic E. coli (EHEC) 21 (23.3%). The predominant virulence gene among the diarrheagenic E. coli was EAEC heat-stable enterotoxin astA genes while the virulence genes identified in the Salmonella strains were 15 (12.6%) flic and 105 (88.2%) inv genes. The amino acid identity of the representative genes showed 95-100% similarity to corresponding blast searched sequence.ConclusionsThis study showed the diversity of virulence gene expression in two major enteric pathogens. S. typhi and enteroaggregative E. coli were the predominant enteropathogens in our study area with an indication that EAEC is endemic within our study population. It was observed among other things that some diarrheagenic E. coli isolated from apparently asymptomatic subjects expressed some virulence genes at frequency as high as seen in diarrheagenic cases. This study underlines the importance of understanding the virulence composition and diversity of pathogens for enhanced clinico-epidemiological monitoring and health care delivery.
The increase in the incidence of extended-spectrum β-lactamase- (ESBL-) producing Klebsiella species has become a serious problem worldwide, because of their incrimination in antibiotic resistance. The objective of this study is to investigate the resistance genes responsible for ESBL-producing Klebsiella species and carbapenemase-producing Klebsiella (CRE) isolated in Mthatha and to study their epidemiology. A prospective, descriptive study of 202 nonrepetitive samples from patients was obtained from Nelson Mandela Academic Hospital. The cultured Klebsiella isolates were subjected to antimicrobial susceptibility tests and the polymerase chain reaction of blaCTX-M, blaTEM, blaSHV, blaKPC, and blaNDM genes. Overall K. pneumoniae were the majority with 169 (83.7%) species isolates, followed by K. oxytoca with 29 (14.4%), while K. ozaenae and Raoultella ornithinolytica were 2 (0.9%) each. The prevalence of ESBL production in all Klebsiella species was 117 (57.9%). ESBL-genotypic resistance is driven in Mthatha by blaSHV 121 (77.1%) followed by blaTEM 105 (66.9%) and blaCTX-M at 89 (56.7%). The most common ESBL genotype combination among the Klebsiella was blaTEM + blaSHV + blaCTX-M at 79 (50.3%). There is a steady increase in the rate of ESBL genes in the last five years.
BackgroundSeveral herbs are traditionally used in the treatment of a variety of ailments particularly in the rural areas of South Africa where herbal medicine is mainly the source of health care system. Many of these herbs have not been assessed for safety or toxicity to tissue or organs of the mammalian recipients.MethodsThis study evaluated the cytotoxicity of some medicinal plants used, inter alia, in the treatment of diarrhoea, and stomach disorders. Six selected medicinal plants were assessed for their antibacterial activities against ampicillin-resistant and kanamycin-resistant strains of Escherichia coli by the broth micro-dilution methods. The cytotoxicities of methanol extracts and fractions of the six selected plants were determined using a modified tetrazolium-based colorimetric assay (3-(4, 5-dimethylthiazol)-2, 5-diphenyl tetrazolium bromide (MTT) assay).ResultsThe average minimum inhibitory concentration (MIC) values of the plants extracts ranged from 0.027 mg/mℓ to 2.5 mg/mℓ after 24 h of incubation. Eucomis autumnalis and Cyathula uncinulata had the most significant biological activity with the least MIC values. The in vitro cytotoxicity assay on human hepatocarcinoma cell line (Huh-7) revealed that the methanol extract of E. autumnalis had the strongest cytotoxicity with IC50 of 7.8 μg/mℓ. Ethyl acetate and butanol fractions of C. uncinulata, Hypoxis latifolia, E. autumnalis and Lantana camara had lower cytotoxic effects on the cancer cell lines tested with IC50 values ranging from 24.8 to 44.1 μg/mℓ; while all the fractions of Aloe arborescens and A. striatula had insignificant or no cytotoxic effects after 72 h of treatment.ConclusionsOur results indicate that the methanol fraction of E. autumnalis had a profound cytotoxic effect even though it possessed very significant antibacterial activity. This puts a query on its safety and hence a call for caution in its usage, thus a product being natural is not tantamount to being entirely safe. However, the antibacterial activities and non-cytotoxic effects of A. arborescens and A. striatula validates their continuous usage in ethnomedicine.
The proliferation of extended spectrum beta-lactamase (ESBL) producing Pseudomonas aeruginosa represent a major public health threat. In this study, we evaluated the antimicrobial resistance patterns of P. aeruginosa strains and characterized the ESBLs and Metallo- β-lactamases (MBL) produced. Strains of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; antimicrobial susceptibility testing was carried out against thirteen clinically relevant antibiotics using the BioMérieux VITEK 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Strains of P. aeruginosa demonstrated resistance to wide-ranging clinically relevant antibiotics including piperacillin (64.2%), followed by aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug-resistant (MDR) strains were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n = 82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the strains tested. The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant strains carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.