Precise biostratigraphic constraints on the age of the Tal Group are restricted to (1) a basal level correlative with the Anabarites trisulcatus–Protohertzina anabarica Assemblage Zone of southwest China, (2) a level near the boundary of the lower and upper parts of the Tal Group correlative with the early Tsanglangpuan Stage (Drepanuroides Zone), and (3) an interval low in the upper part of the Tal Group correlative with later in the Tsanglangpuan Stage (Palaeolenus Zone). These correlations are based on small shelly fossil and trilobite taxa. Other chronostratigraphic constraints include the marked negative δ13C isotopic excursion coincident with the transition from the Krol Group to the Tal Group. This excursion is used as a proxy for the Precambrian–Cambrian boundary in several sections worldwide and, if applied to the Lesser Himalaya, indicates that the boundary is at or just above the base of the Tal Group. The upper parts of the Tal Group may be of middle or late Cambrian age and might form proximal equivalents of sections in the Zanskar–Spiti region of the Tethyan Himalaya. Both faunal content and lithological succession are comparable to southwest China, furthering recent arguments for close geographic proximity between the Himalaya and the Yangtze block during late Neoproterozoic and early Cambrian time. Trilobites from the uppermost parts of the Sankholi Formation from the Nigali Dhar syncline are described and referred to three taxa, one of which, Drepanopyge gopeni, is a new species. They are the oldest trilobites yet described from the Himalaya.
These results indicate that A. baumannii causes severe intraocular inflammation and retinal damage. Furthermore, neutrophils play an important role in the pathogenesis of A. baumannii endophthalmitis.
Genes capable of 4-chlorobiphenyl (4-CBP) degradation were cloned from 4-CBP-degrading Pseudomonas putida OU83 by using a genomic library which was constructed in the broad-host-range cosmid vector pCP13. P. putida AC812 containing chimeric cosmid-expressing enzymes involved in the 4-CBP degradation pathway were identified by detecting 3-phenylcatechol dioxygenase activity (3-PDA). Chimeric cosmid clones pOH83, pOH84, pOH85, pOH87, and pOH88 positive for 3-PDA grew in synthetic basal medium containing 4-CBP (5 mM) as a carbon source. Restriction digestion analysis of recombinant cosmids showed DNA inserts ranging from 6 to 30 kilobase pairs. Southern hybridization data revealed that the cloned DNA inserts originated from strain OU83. Gas chromatography-mass spectrometry analysis of the metabolites of P. putida AC812(pOH88) incubated with 4-CBP and 4'-chloro-3-phenylcatechol showed the formation of 4-chlorobenzoic acid and benzoic acid. These results demonstrate that the cloned DNA fragments contain genes encoding for chlorobiphenyl dioxygenase (cbpA), dihydrodiol dehydrogenase (cbpB), 4'-chloro-3-phenylcatechol dioxygenase (cbpC), a meta-cleavage compound (a chloro derivative of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate) hydrolase (cbpD), and a new dechlorinating activity (dcpE). The location of the cbpC gene specifying 3-PDA was determined by subcloning an EcoRI DNA fragment (9.8 kilobase pairs) of pOH88 in plasmid vector pUC19. The cloned gene encoding 3-PDA was expressed in Escherichia coli HB101 and had substrate specificity only for 3-phenylcatechol and 4'-chloro-3-phenylcatechol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.