We present a pulsed dc voltage printing regime for high-speed, high-resolution and high-precision electrohydrodynamic jet (E-jet) printing. The voltage pulse peak induces a very fast E-jetting mode from the nozzle for a short duration, while a baseline dc voltage is picked to ensure that the meniscus is always deformed to nearly a conical shape but not in a jetting mode. The duration of the pulse determines the volume of the droplet and therefore the feature size on the substrate. The droplet deposition rate is controlled by the time interval between two successive pulses. Through a suitable choice of the pulse width and frequency, a jet-printing regime with a specified droplet size and droplet spacing can be created. Further, by properly coordinating the pulsing with positioning commands, high spatial resolution can also be achieved. We demonstrate high-speed printing capabilities at 1 kHz with drop-on-demand and registration capabilities with 3-5 μm droplet size for an aqueous ink and 1-2 μm for a photocurable polymer ink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.