Ecstasy samples often contain byproducts of the illegal, uncontrolled synthesis of N-methyl-3,4-methylenedioxy-amphetamine or 3,4-methylenedioxy-methamphetamine (MDMA). MDMA and eight chemically defined byproducts of MDMA synthesis were investigated for their interaction with the primary sites of action of MDMA, namely the human plasmalemmal monamine transporters for norepinephrine, serotonin, and dopamine [(norepinephrine transporter (NET), serotonin transporter (SERT), and dopamine transporter (DAT)]. SK-N-MC neuroblastoma and human embryonic kidney cells stably transfected with the transporter cDNA were used for uptake and release experiments. Two of the eight compounds, 1,3-bis (3,4-methylenedioxyphenyl)-2-propanamine (12) and N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (13) had uptake inhibitory potencies with IC 50 values in the low micromolar range similar to MDMA. Compounds with nitro instead of amino groups and a phenylethenyl instead of a phenylethyl structure or a formamide or acetamide modification had IC 50 values beyond 100 M. MDMA, 12, and 13 were examined for induction of carrier-mediated release by superfusion of transporter expressing cells preloaded with the metabolically inert transporter substrate [3 H]1-methyl-4-phenylpyridinium. MDMA induced release mediated by NET, SERT, or DAT with EC 50 values of 0.64, 1.12, and 3.24 M, respectively. 12 weakly released from NET-and SERT-expressing cells with maximum effects less than one-tenth of that of MDMA and did not release from DAT cells. 13 had no releasing activity. 12 and 13 inhibited release induced by MDMA, and the concentration dependence of this effect correlated with their uptake inhibitory potency at the various transporters. These results do not support a neurotoxic potential of the examined ecstasy synthesis byproducts and provide interesting structure-activity relationships on the transporters.
The most practical synthetic routes to the preparation of as important pharmaceuticals as oxycodone, naloxone, naltrexone, nalbuphine and buprenorphine have utilized the alkaloid, thebaine, as a starting material. This review intends to focus on chemical transformations of morphinans which resulted in morphinandiene derivatives with well-established and novel pharmacological potencies. These chemical transformations were mainly associated with the formation and substitution of the unique diene structure of the ring C of the morphinan backbone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.