Tillage changes soil properties and the way how the environment affects those properties. Soil properties and environment determine the rate of water movement in liquid and gaseous form into and out of soil. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management and the KITE PLC, various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok county. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively. The purpose of the present study is to compare these cultivation systems according to the soil- and maize kernel moisture content and to the yield based on the years of 2012 and 2013.
The effect of the amount and application date of nitrogen fertilizer on maize productivity and profitability was examined in a field experiment established on calcareous chernozem soil at the University of Debrecen in Hungary (47 o 33' N, 21 o 26' E, 111 m) under different environmental conditions in the wet crop year of 2016 and the average crop year of 2017. In addition to the non-fertilized treatment, N fertilizer doses were applied in the form of basal and top dressing. The 60 and 120 kg N ha -1 treatments applied as spring basal dressing were followed by two occasions of 30 kg N ha -1 top dressing at the V6 and V12 phenophases each. The longer maturity hybrid Armagnac (FAO 490) had a better conversion ratio concerning the precipitation during the growing season of 2016 (which was higher than the 30-year average), as well as the basal and top dressing (averaged over the different treatments) in comparison with the shorter maturity hybrid Renfor (FAO 320). In the wet crop year, the yield of Armagnac was 21.7% higher, while that of Renfor was 10.4% higher. The 60 kg N ha -1 basal dressing and the +30 kg N ha -1 top dressing at the V6 phenophase (V6 90 ) resulted in more efficient uptake and better conversion rate in the rainy crop year (2016) in the case of both examined hybrids. In the average crop year (2017), a difference was observed in the successfulness of top dressing. In the case of the Armagnac hybrid (FAO 490), top dressing did not cause any significant yield surplus and the 120 kg N ha -1 basal dressing was shown to be successful. In the case of the Renfor hybrid (FAO 320), the early top dressing (V6 150 ) applied on the basal dressing of 120 kg N ha -1 was favorable. The most favorable income of nutrient management (N) was provided by the basal dressing of 120 kg N ha -1 and the +30 kg N ha -1 (V6 150 ) top dressing applied at the early V6 phenophase, averaged over the examined hybrids and years. In the case of the Renfor hybrid (FAO 320), the highest profitability was reached with the V6 150 treatment, independently of the prevailing environmental factors. However, as regards the Armagnac (FAO 490) hybrid, the top dressing applied at the V12 phenophase provided the highest profitability, which could be achieved with the lowest dose of V12 120 treatment in the wet year (2016) and the highest dose of V12 180 in the average crop year (2017). Altogether, based on the results of yield and marginal revenue analysis, the recommended fertilization technology is basal dressing of 120 kg N ha -1 and basal dressing of +30 kg N ha -1 (V6 150 ) applied at the early V6 phenophase. The obtained findings also show that the effect of N is greatly affected by crop year, genotype, and other elements of the applied technology. Also, marginal efficiency has to be defined for each hybrid, considering the given crop year, too.
The requirements and objectives of cultivation are in constant change. There are different cultivation aims if the objective is soil protection, the prevention of its moisture content or on areas with different precipitation supply or production site endowments. Based on the experimental database of the Institute for Land Utilisation, Regional Development and Technology of the University of Debrecen, Centre for Agricultural and Applied Economic Sciences and the KITE Plc., the various cultivation systems in Hajdú-Bihar country were examined with maize as indicator plant. The sample area can be found in the outskirts of Biharnagybajom on meadow soil. On the examined plot, spring strip basic cultivation, loosening and autumn ploughing were applied on 15-15-15 ha, respectively. At the time of taking undisturbed soil samples, soil conductivity measurements were also performed with a Penetronik penetrometer. Undisturbed soil samples were taken from each treatment before sowing (on 5th April 2012). The yield obtained in the strip cultivation treatment increased that of the ploughing and the loosening technology. The economic indexes are the most favourable in the strip cultivation.
Maize production plays a major role in the agriculture of Hungary. Maize yields were very variable in Hungary in the last few decades. Unpredictable purchase prices, periodical overproduction, the increasing occurrence of weather extremities, the uncertain profit producing ability, the soil degradation processes (physical, chemical and biological degradation) and the high expenses are risk factors for producers. Due soil tillage, there is an opportunity to reduce these risks. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Centre for Agricultural and the KITE Plc., various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok country in 2012 and 2013. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively. In general, our findings show, that strip-tillage and subsoiling can be alternative tillage systems beside moldboard ploughing on meadow chernozem soils in Hungary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.