Testing Fusarium resistance to ear rots in maize requires a well-supported methodology and tests for toxin responses. In this study, commercial hybrids were tested for resistance to Fusarium graminearum, Fusarium culmorum, and Fusarium verticillioides (kernel and silk channel), as well as their toxin response. One third of the hybrids tested showed a similar resistance or susceptibility to the three pathogens and their toxin response, but there is no proof for their genetic background being the same or different. The performance of the remaining hybrids was highly variable and supports the idea of different genetic regulation. The mean ear rot severity of the kernel resistance was doubled compared with the silk channel resistance data. The ear rot and toxin tests displayed significant positive correlations, verifying the decisive role of resistance in toxin regulation. Several hybrids, termed toxigenic hybrids, showed significant extra toxin production, indicating an additional food safety risk. The toothpick method gave more reliable results and a better differentiation of genotypes. The resistance to different Fusarium spp. in a specific growing region should be analyzed separately in independent resistance tests. Through this, the food safety risks could be better identified. Susceptible hybrids should not be used for commercial production.
The Muskingum-Cunge scheme applied to the one-dimensional unsteady advection-diffusion equation is investigated. To eliminate the numerical diffusion, the coefficients of the scheme are defined in such a way that the scheme does not contain the weighting parameters explicitly, but the Courant and Péclet numbers only. If one of the weighting factors is prescribed, the other should be necessarily negative in a lot of cases, which does not affect the applicability of the scheme. It is shown that the accuracy can be increased further, the numerical oscillations can also be eliminated by prescribing a simple relationship between the Courant and Péclet numbers. Sufficient conditions for strong stability are also presented. RÉSUMÉDans l'article on analyse le schema Muskingum-Cunge applique a l'équation unidimensionnelle de convection-diffusion. Afin éliminer la diffusion numérique les coefficients du schema sont exprimés exclusivement en termes des Nombres de Courant et de Péclet et non pas en termes habituels contenant explicitement les paramètres de pondération. La definition arbitraire de l'un des facteurs de pondération entraïne, dans bien des cas, des valeurs negatives d'autres facteurs sans que l'applicabilité du schema soit pour autant invalidee. On démontre que la précision peut être améliorée au-dela et que des oscillations numériques peuvent être éliminées en imposant une relation simple entre les Nombres de Courant et de Péclet. On présente aussi les conditions fortes de la stabilité numériques.
Four maize hybrids bred at the Cereal Research Non-Profit Company in Szeged were registered at the National Institute for Agricultural Quality Control (OMMI) during the period 2001-2004. The registration of five Szeged hybrids is expected on the territory of the European Union in 2005-2006. The hybrids are accompanied by specific production technological guides for commercial production based on the results of agronomy trials, so that the genetic potential of the hybrids can be utilised in practical farming to the highest possible extent. The specific agronomic traits of hybrids with different vegetation periods and genotypes are investigated. If a maize hybrid is to be recommended to farmers, it is necessary to know not only its yield potential, but also its yield stability. For this reason, investigations are also made on the effect of soil and climate on the grain yield potential of each hybrid individually.
The aim of this paper is to present the results of the field trial carried out to collect and assess data on the interaction of maize (Zea mays L) genotypes and beneficial microorganisms. The small plot field trial consisting of untreated control plots and plots treated with biostimulants was conducted in three consecutive years (2019, 2020 and 2021). Yield is a particularly important trait from the aspect of maize breeding as well as maize production; therefore, the present study focused more closely on how it was influenced by the biostimulant treatments. The level of grain yield, grain moisture content at harvest and grain dry-matter content were observed and recorded as the components of yield. The nutritional value of kernels was also tested, and protein, oil and starch contents were analysed as the most important components of this trait. The results reflected that the treatment with biostimulants constituted from beneficial microorganisms can be listed among the factors influencing the grain yield, in addition to the seasonal effect, the genotype and the nutrient supply of the soil. The treatment with biostimulants, even on its own among the factors, had an impact on the quantity and components of yield, and on the characteristics determining the kernel nutritional value. The interaction between the genotypes and the interacting microorganisms is of specific importance. The most spectacular result was attained with the application of one of the biostimulants leading to elevated grain yield in 75% of the maize genotypes in the study, along with a kernel nutritive value equal to the control group over all of the three years of the trial.
Gibberella ear rot (GER) is an important fungal ear pathogen of maize that causes ear rot and toxin contamination. Most previous works have only dealt with the visual symptoms, but not with the toxins of GER. As food and feed safety rankings depend on toxin contamination, including deoxynivalenol (DON), without toxins, nothing can be said about the risks involved in food and feed quality. Therefore, three susceptible, three medium-susceptible, and three medium-resistant mother lines were crossed with three testers with differing degrees of resistance and tested between 2017–2020. Two plot replicates and two fungal strains were used separately. The highest heterosis was found at the GER% with a 13% increase across 27 hybrids, including 7 hybrids showing negative heterosis (a higher hybrid performance above the parental mean), with a variance ranging between 63.5 and −55.4. For DON, the mean heterosis was negative at −35%, and only 10 of the 27 hybrids showed a positive heterosis. The mean heterosis for DON contamination, at 1% GER, was again negative (−19.6%, varying between 85% and 224%). Only 17 hybrids showed heterosis, while that of the other 17 was rated higher than the parental mean. A positive significant correlation was found only for GER% and DON; the other factors were not significant. Seven hybrids were identified with positive (2) or negative (5) heterosis for all traits, while the rest varied. For DON and GER, only 13 provided identical (positive or negative) heteroses. The majority of the hybrids appeared to diverge in the regulation of the three traits. The stability of GER and DON (variance across eight data sets) did not agree—only half of the genotypes responded similarly for the two traits. The genetic background for this trait is unknown, and there was no general agreement between traits. Thus, without toxin analyses, the evaluation of food safety is not possible. The variety in degrees of resistance to toxigenic fungi and resistance to toxin accumulation is an inevitable factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.