The acetamidomethyl group has been found to be a useful protecting group for the thiol of cysteine. It was added to the thiol of cysteine and to the eight cysteines of the reduced S-protein of ribonuclease under acidic conditions. It is stable under the conditions commonly used in peptide synthesis and is removed by mercuric ion under mild conditions. The mercuric ion may be removed by treatment with H,S for small peptides and by gel filtration in the presence of mercaptoethanol for large peptides and proteins.
Novel potent and selective diarylimidazole inhibitors of p38 MAP (mitogen-activated protein) kinase are described which have activity in both cell-based assays of tumor necrosis factor-alpha (TNF-alpha) release and an animal model of rheumatoid arthritis. The SAR leading to the development of selectivity against c-Raf and JNK2alpha1 kinases is presented, with key features being substitution of the 4-aryl ring with m-trifluoromethyl and substitution of the 5-heteroaryl ring with a 2-amino substituent. Cell-based activity was significantly enhanced by incorporation of a 4-piperidinyl moiety at the 2-position of the imidazole which also enhanced aqueous solubility. In general, oral bioavailability of this class of compounds was found to be poor unless the imidazole was methylated on nitrogen. This work led to identification of 48, a potent (p38 MAP kinase inhibition IC50 0.24 nM) and selective p38 MAP kinase inhibitor which inhibits lipopolysaccharide-stimulated release of TNF-alpha from human blood with an IC50 2.2 nM, shows good oral bioavailability in rat and rhesus monkey, and demonstrates significant improvement in measures of disease progression in a rat adjuvant-induced arthritis model.
Immunogold staining and electron microscopy show that IL-2 receptor ␣-subunits exhibit nonrandom surface distribution on human T lymphoma cells. Analysis of interparticle distances reveals that this clustering on the scale of a few hundred nanometers is independent of the presence of IL-2 and of the expression of the IL-2R -subunit. Clustering of IL-2R␣ is confirmed by confocal microscopy, yielding the same average cluster size, Ϸ600 -800 nm, as electron microscopy. HLA class I and II and CD48 molecules also form clusters of the same size. Disruption of cholesterol-rich lipid rafts with filipin or depletion of membrane cholesterol with methyl--cyclodextrin results in the blurring of cluster boundaries and an apparent dispersion of clusters for all four proteins. Interestingly, the transferrin receptor, which is thought to be located outside lipid rafts, exhibits clusters that are only 300 nm in size and are less affected by modifying the membrane cholesterol content. Furthermore, transferrin receptor clusters hardly colocalize with IL-2R␣, HLA, and CD48 molecules (crosscorrelation coefficient is 0.05), whereas IL-2R␣ colocalizes with both HLA and CD48 (crosscorrelation coefficient is between 0.37 and 0.46). This coclustering is confirmed by electron microscopy. The submicron clusters of IL-2R␣ chains and their coclustering with HLA and CD48, presumably associated with lipid rafts, could underlie the efficiency of signaling in lymphoid cells.IL-2 receptor ͉ HLA glycoproteins ͉ transferrin receptor ͉ receptor clustering ͉ electron microscopy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.