Knowledge of the order of the effective nonlinear absorption in multiphoton photoresists is a key element in the development of improved materials for multiphoton absorption polymerization (MAP). The direct measurement of this nonlinearity has proven challenging. A new technique called 2‐beam initiation threshold (2‐BIT) is presented that allows for the unambiguous, in situ measurement of the order of the effective nonlinear absorption using a simple optical arrangement that can be employed with virtually any MAP setup. This technique is benchmarked using three common commercial photoinitiators that have been used previously in MAP and one common dye that acts as a photoinitiator. The linear absorption spectrum is demonstrated to be a poor predictor of the effective order of nonlinear absorption at a given wavelength. Surprisingly, for two of these initiators the effective nonlinear absorption process is dominated by 3‐photon absorption in the 800 nm wavelength range, suggesting that 2‐BIT is a valuable means of identifying initiators that can improve the resolution of MAP.
Summary We introduce techniques for probing the dynamics of triplet states. We employ these tools, along with conventional techniques, to develop a detailed understanding of a complex chemical system: a negative-tone, radical photoresist for multiphoton absorption polymerization in which isopropylthioxanthone (ITX) is the photoinitiator. This work reveals that the same color of light used for the 2-photon excitation of ITX, leading to population of the triplet manifold through intersystem crossing, also depletes this triplet population via linear absorption followed by reverse intersystem crossing (RISC). Using spectroscopic tools and kinetic modeling, we identify the reactive triplet state and a non-reactive reservoir triplet state. We present compelling evidence that the deactivation channel involves RISC from an excited triplet state to a highly vibrationally excited level of the electronic ground state. The work described here offers the enticing possibility of understanding, and ultimately controlling, the photochemistry and photophysics of a broad range of triplet processes.
The development of new photoresists for semiconductor manufacturing applications requires an understanding of the material properties that control the material's plasma etching behavior. Ion bombardment at ion energies of the order 100 s of eV is typical of plasma-based pattern-transfer processes and results in the formation of a dense amorphous carbon (DAC) layer on the surface of a photoresist, such as the PR193-type of photoresist that currently dominates the semiconductor industry. Prior studies have examined the physical properties of the DAC layer, but the correlation between these properties and the photoresist etching behavior had not been established. In this work, the authors studied the real-time evolution of a steady-state DAC layer as it is selectively depleted using an admixture of oxygen into an argon plasma. Observations of the depletion behavior for various DAC layer thicknesses motivate a new model of DAC layer depletion. This model also correlates the impact of the DAC layer thickness with the etch rate of the bulk photoresist. The authors find that up to a 40% depletion of the DAC layer thickness does not have a significant impact on the bulk photoresist etch rate. However, further depletion results in an exponential increase in the etch rate, which can be up to ten times greater at full depletion than for the fully formed DAC layer. Thus, with these trends the authors show that the photoresist etch rate is controlled by the thickness of the DAC layer. Furthermore, thickness loss of the DAC layer in an O2-containing plasma coincides with a chemical modification of the layer into an oxygen-rich surface overlayer with properties that are intermediate between those of the DAC layer and the bulk photoresist. Support for this interpretation was provided via x-ray photoelectron spectroscopy characterization. Atomic force microscopy was used to gauge the impact on surface roughness as the DAC layer is formed and depleted. The trends established in this work will provide a benchmark in our development of new photoresists, which will be suitable for pattern transfer processes that will ultimately be a part of enabling smaller semiconductor device feature sizes and pitches.
Multiphoton absorption (MPA) is an enabling technology for many applications. However, due to the low probability of MPA processes, their accurate characterization remains a challenge. Here we introduce a new technique, two-beam constant emission intensity (2-BCEIn) spectroscopy, that offers substantial advantages over other existing methods that use the generation of optical emission for the characterization of absorptive nonlinearities. We use 2-BCEIn to study nonlinear absorption in solutions of crystal violet lactone (CVL) over a range of excitation wavelengths in which the dominant nonlinear absorption process transitions from two-photon absorption (750 nm) to three-photon absorption (830 nm). At an excitation wavelength of 800 nm, both two-photon absorption and three-photon absorption contribute substantially to the nonlinear fluorescence excitation (NFE) signal, although the dynamic range of the NFE data is not sufficient to quantify the contributions of each process. 2-BCEIn spectroscopy enables the direct measurement of the local exponent at each emission intensity. 2-BCEIn measurements made at several different emission intensities demonstrate unambiguously that the nonlinear excitation of CVL at 800 nm cannot be described solely as the sum of a two-photon process and a three-photon process. A kinetic model that includes intrapulse excited-state absorption reproduces the features of the 2-BCEIn measurements and enables the determination of the ratio of the three-photon absorption cross section to the two-photon absorption cross section. Such information cannot easily be extracted from conventional NFE measurements. These results demonstrate the power and versatility of two-beam action spectroscopies for elucidating the complex photophysics of multiphoton absorption processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.