Background:The quantification of hypoxia based on resting partial pressure of arterial oxygen (PaO2) may underestimate hypoxia related to activities of daily living or sleep and thus not accurately reflect pulmonary hypertension (PH). The aim of the present study was to investigate the association of resting PaO2 with percent time of SpO2 below 90% (T90) and 88% (T88) in 24 hours. We also evaluated the capacity of hypoxia measures to predict PH in patients with idiopathic pulmonary fibrosis (IPF).Method:This cross-sectional study included 27 patients with IPF presenting PaO2 ≥ 55 mmHg and not receiving home oxygen therapy. All were submitted to blood gas measurement, 24-h oximetry, and transthoracic Doppler echocardiography to estimate systolic pulmonary artery pressure (SPAP). Patients were divided into three groups according to resting PaO2: 55-55.9 mmHg (A); 60-60.9 mmHg (B); ≥ 70 mmHg (C). PH was defined as “likely” if SPAP > 50 mmHg, and as possible for SPAP between 37 and 50 mmHg.Results:T90 and T88 in Groups A, B, and C were as follows: 59.9±29% and 44.1±34%; 49.3±34% and 29.9±31%; 17.1±25% and 8.8±18% respectively, with significant differences between the groups for both T90 (p ≤ 0.01) and T88 (p = 0.02). PaO2 was inversely correlated with T90 (r = -0.398; p = 0.04) and T88 (r = -0.351; p = 0.07). Hypoxia variables did not correlate with SPAP, and were not able to predict PH.Conclusion:Percent time of SpO2 below 90% and 88% in 24 hours revealed periods of severe hypoxia even in patients with borderline-normal resting PaO2. However, none of the present hypoxia variables was capable of predicting PH.
The semiological signs indicative of PH presented low sensitivity and specificity levels for clinically diagnosing this comorbidity.
Background: Heart diseases can cause changes to vascular ultrasonography (VUS) waveforms in peripheral vessels. These changes are typically bilateral and systemic, they have been little studied, and little is known about them. Objective: To assess peripheral VUS waveforms in elderly patients in order to identify changes caused by heart diseases. Methods: During 2014, a total of 183 elderly patients were examined with peripheral VUS and the results were analyzed. Results: The sample comprised 102 women (55.7%) and 81 men (44.3%) with ages ranging from 60 to 91 years (mean of 70.4±7.2 years). Abnormalities were identified in VUS waveforms in 84 patients (45.9%). A total of 138 abnormalities were identified and classified into eight of the 13 categories described in the literature, as follows: arrhythmia, systolic pulsus bisferiens, low peak systolic velocity, pulsatile flow in femoral veins, bradycardia, tachycardia, pulsus tardus et parvus and pulsus alternans. There was low agreement between presence/absence of VUS abnormalities and cardiological assessments. Analysis of specific abnormalities revealed variable levels of agreement between VUS and cardiological assessments, ranging from good for tachycardia, moderate for arrhythmia, to low for bradycardia. There was no agreement between VUS and cardiological examinations for the remaining categories of abnormalities. Conclusions: Certain cardiac abnormalities can be identified in elderly patients by analysis of peripheral VUS waveforms. It is important to recognize and report the presence of these abnormalities because there is a possibility that they may serve to signal hitherto unidentified diagnoses in these patients. However, further studies are needed to determine the importance of changes to peripheral Doppler waveforms to recognition of heart diseases.
Background: Little is known about right ventricular dysfunction in non-advanced idiopathic pulmonary fibrosis (IPF) patients without hypoxemia at rest. We evaluated it at rest and during exercise. Research design and methods: 123 IPF patients were evaluated, and 27 met all the following criteria: Gender-Age-Physiology Index score ≤5, modified Medical Research Council dyspnea score ≤3, peripheral oxygen saturation ≥92% at rest, and no history of oxygen therapy. They were submitted to twodimensional speckle-tracking echocardiography at rest and during cardiopulmonary exercise to analyze right ventricular global longitudinal strain. Results: Abnormal speckle-tracking echocardiography findings were identified in 10/27 patients (37%), indicating right ventricular (RV) dysfunction. No patients had abnormalities observed in conventional echocardiographic parameters. Significant differences in mPAP were observed between patients with RV dysfunction and those without dysfunction (at rest: 26.0 ± 4.8 vs. 19.1 ± 4.2 mmHg, p = 0.001; during exercise: 51.3 ± 6.4 vs. 36.9 ± 14.7 mmHg, p = 0.002). Conclusions: RV dysfunction was detected in 37% of non-advanced IPF patients and early recognition was only possible using speckle-tracking echocardiography. Special attention should be given to these patients as RV dysfunction is suggestive of worse prognosis. These patients could benefit from new specific drugs or even oxygen therapy for transitory hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.