A detailed investigation of the hierarchy of asymmetry operating in the self-assembly of achiral (1) and chiral ((S)-2 and (R)-3) 1,3,5-triphenylbenzenetricarboxamides (TPBAs) is reported. The aggregation of these TPBAs is conditioned by the point chirality at the peripheral side chains for (S)-2 and (R)-3. An efficient helix-to-helix interaction that goes further in the organization of fibrillar bundles is experimentally detected and theoretically supported only for the achiral TPBA 1. The effective interdigitation of the achiral aliphatic side chains produces a social self-sorting to form preferentially heterochiral macromolecular aggregates.
After more than three decades of extensive investigations on supramolecular polymers, strategies for selflimiting growth still remain challenging. Herein, we exploit a new V-shaped monomer design to achieve anticooperatively formed oligomers with superior robustness and high luminescence. In toluene, the monomer-oligomer equilibrium is shifted to the monomer side, enabling the elucidation of the molecular packing modes and the resulting (weak) anticooperativity. Steric effects associated with an antiparallel staircase organization of the dyes are proposed to outcompete aromatic and unconventional BÀ F•••HÀ N/C interactions, restricting the growth at the stage of oligomers. In methylcyclohexane (MCH), the packing modes and the anticooperativity are preserved; however, pronounced solvophobic and chain-enwrapping effects lead to thermally ultrastable oligomers. Our results shed light on understanding anticooperative effects and restricted growth in self-assembly.
After more than three decades of extensive investigations on supramolecular polymers, strategies for self‐limiting growth still remain challenging. Herein, we exploit a new V‐shaped monomer design to achieve anticooperatively formed oligomers with superior robustness and high luminescence. In toluene, the monomer‐oligomer equilibrium is shifted to the monomer side, enabling the elucidation of the molecular packing modes and the resulting (weak) anticooperativity. Steric effects associated with an antiparallel staircase organization of the dyes are proposed to outcompete aromatic and unconventional B−F⋅⋅⋅H−N/C interactions, restricting the growth at the stage of oligomers. In methylcyclohexane (MCH), the packing modes and the anticooperativity are preserved; however, pronounced solvophobic and chain‐enwrapping effects lead to thermally ultrastable oligomers. Our results shed light on understanding anticooperative effects and restricted growth in self‐assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.