Abstract. Radio frequency identification (RFID) is an emerging technology which brings enormous productivity benefits in applications where objects have to be identified automatically. This paper presents issues concerning security and privacy of RFID systems which are heavily discussed in public. In contrast to the RFID community, which claims that cryptographic components are too costly for RFID tags, we describe a solution using strong symmetric authentication which is suitable for today's requirements regarding low power consumption and low die-size. We introduce an authentication protocol which serves as a proof of concept for authenticating an RFID tag to a reader device using the Advanced Encryption Standard (AES) as cryptographic primitive. The main part of this work is a novel approach of an AES hardware implementation which encrypts a 128-bit block of data within 1000 clock cycles and has a power consumption below 9 µA on a 0.35 µm CMOS process.
Abstract-This article presents a highly regular and scalable AES hardware architecture, suited for full-custom as well as for semicustom design flows. Contrary to other publications, a complete architecture (even including CBC mode) that is scalable in terms of throughput and in terms of the used key size is described. Similarities of encryption and decryption are utilized to provide a high level of performance using only a relatively small area (10,799 gate equivalents for the standard configuration). This performance is reached by balancing the combinational paths of the design. No other published AES hardware architecture provides similar balancing or a comparable regularity. Implementations of the fastest configuration of the architecture provide a throughput of 241 Mbits/sec on a 0.6 "m CMOS process using standard cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.