Background In Switzerland, HIV-1 transmission among men who have sex with men (MSM) has been dominated by subtype B, whilst non-B subtypes are commonly attributed to infections acquired abroad among heterosexuals. Here, we evaluated the temporal trends of non-B subtypes and the characteristics of molecular transmission clusters (MTCs) among MSM. Methods Sociodemographic and clinical data and partial pol sequences were obtained from participants enrolled in the Swiss HIV Cohort Study (SHCS). For non-B subtypes, maximum likelihood trees were constructed, from which Swiss MTCs were identified and analysed by transmission group. Results Non-B subtypes were identified in 8.1% (416/5,116) of MSM participants. CRF01_AE was the most prevalent strain (3.5%), followed by A (1.2%), F (1.1%), CRF02_AG (1.1%), C (0.9%), and G (0.3%). Between 1990 and 2019, an increase in the proportion of newly diagnosed individuals (0/123[0%] to 11/32 [34%]) with non-B subtypes in MSM was found. Across all non-B subtypes, the majority of MSM MTCs were European. Larger MTCs were observed for MSM than heterosexuals. Conclusions We found a substantial increase in HIV-1 non-B subtypes among MSM in Switzerland and the occurrence of large MTCs, highlighting the importance of molecular surveillance in guiding public health strategies targeting the HIV-1 epidemic.
A systematic phylogenetic approach to study the interaction of HIV-1 with coinfections, non-communicable and opportunistic diseases
HIV-1 is capable of integrating its genome into that of its host cell. We examined the influence of the activation state of CD4 + T-cells, the effect of antiretroviral therapy (ART), and the clinical stage of HIV-1 infection on HIV-1 integration site features and selection. HIV-1 integration sites were sequenced from longitudinally sampled resting and activated CD4 + T-cells from 12 HIV-1 infected individuals. In total, 589 unique HIV-1 integration sites were analyzed: 147, 391, and 51 during primary, chronic, and late presentation of HIV-1 infection, respectively. As early as during primary HIV-1 infection and independent of the activation state of CD4 + T-cells collected on and off ART, HIV-1 integration sites were preferentially detected in recurrent integration genes (RIGs), genes associated with clonal expansion of latently HIV-1 infected CD4 + T-cells, cancer related genes, and highly expressed genes. The preference for cancer related genes was more pronounced at late stages of HIV-1 infection.Host genomic features of HIV-1 integration site selection remained stable during the course of HIV-1 infection in both resting and activated CD4 + T-cells. In summary, characteristic HIV-1 integration site features are pre-established as early as during primary HIV-1 infection and are found in both resting and activated CD4 + T-cells.
Background HIV-1 replication capacity (RC) of transmitted/founder viruses may influence the further course of HIV-1 infection. Methods Replication capacities (RCs) of 355 whole genome primary HIV-1 isolates derived from samples acquired during acute and recent primary HIV-1 infection (PHI) were determined using a novel high throughput infection assay in primary cells. The RCs were used to elucidate potential factors that could be associated with RC during PHI. Results Increased RC was found to be associated with increased set point viral load (VL), and significant differences in RCs among 13 different HIV-1 subtypes were discerned. Notably, we observed an increase in RCs for primary HIV-1 isolates of HIV-1 subtype B over a 17-year period. Associations were not observed between RC and CD4 count at sample date of RC measurement, CD4 recovery after initiation of antiretroviral treatment (ART), CD4 decline in untreated individuals, and acute retroviral syndrome severity scores. Discussion These findings highlight that RCs of primary HIV-1 isolates acquired during the acute and recent phase of infection are more associated with viral factors, i.e., set point VL, than with host factors. Furthermore, we observed a temporal increase in RC for HIV-1 subtype B viruses over a period of 17 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.