Grazing incidence X-ray diffraction reveals that a pentacene monolayer, grown on an amorphous SiO2 substrate that is commonly used as a dielectric layer in organic thin film transistors (OTFTs), is crystalline. A preliminary energy-minimized model of the monolayer, based on the GIXD data, reveals that the pentacene molecules adopt a herringbone arrangement with their long axes tilted slightly from the substrate normal. Although this arrangement resembles the general packing features of the (001) layer in single crystals of bulk pentacene, the monolayer lattice parameters and crystal structure differ from those of the bulk. Because carrier transport in pentacene OTFTs is presumed to occur in the semiconductor layers near the dielectric interface, the discovery of a crystalline monolayer structure on amorphous SiO2 has important implications for transport in OTFTs.
We report the structural and electrical characterization of two new p-channel organic semiconductors, 5,5'-bis(2-tetracenyl)-2,2'-bithiophene (1) and 5,5'-bis(2-anthracenyl)-2,2'-bithiophene (2). Both compounds exhibited a high degree of thermal stability with decomposition temperatures of 530 degrees C and 425 degrees C for 1 and 2, respectively. The thin-film structures of 1 and 2 were examined using wide-angle X-ray diffraction (XRD), grazing incidence X-ray diffraction (GIXD), and atomic force microscopy (AFM). Films of 1 and 2 pack in similar triclinic unit cells with the long axes of the molecules nearly perpendicular to the substrate. Thin-film transistors (TFTs) based on 1 and 2 exhibit contact-corrected linear regime hole mobility as high as 0.5 cm2/Vs and 0.1 cm2/Vs, respectively. The specific contact resistance at high gate voltages for gold top contacts was 2 x 10(4) Ohms cm and 3 x 10(4) Ohms cm for 35 nm thick films of 1 and 2, respectively. Long-term air stability tests revealed less degradation of the electrical properties of 1 and 2 in comparison to pentacene. Variable temperature measurements revealed activation energies as low as 22 and 27 meV for 1 and 2, respectively. The temperature and gate voltage dependence of the mobility are discussed in terms of a double exponential distribution of trap states and a model accounting for the layered structure of the organic films. The enhanced air and thermal stability over pentacene, combined with good electrical performance characteristics, make 2 a promising candidate for future organic TFT applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.