SignificanceThe development of selective antagonists for muscarinic acetylcholine receptors is challenging due to high homology in orthosteric binding sites among subtypes. Starting from a single amino acid difference in the orthosteric pockets in M2 muscarinic acetylcholine receptor (M2R) and M3R, we developed an M3R-selective antagonist using molecular docking and structure-based design. The resulting M3R antagonist showed up to 100-fold selectivity over the M2R in affinity and 1,000-fold selectivity in vivo. The docking-predicted geometry was further confirmed by a 3.1 Å crystal structure of M3R in complex with the selective antagonist. The potential of structure-based design to develop selective drugs with reduced off-target effects is supported by this study.
The presence of multiple muscarinic acetylcholine receptor (mAChR) subtypes in the heart and lung, combined with the lack of mAChR subtype-selective ligands, have complicated the task of identifying the mAChR subtypes mediating cardiac slowing (bradycardia) and airway narrowing (bronchoconstriction) due to vagal innervation. To determine which of the five mAChRs are responsible for the cholinergic control of heart rate and airway caliber in vivo, we performed experiments on mutant mice lacking the two prime candidates for such control, the M2 or M3 mAChR. Here, we report that in vivo, bradycardia caused by vagal stimulation or administration of the muscarinic agonist methacholine (MCh) was abolished in mice lacking functional M2 mAChRs (M2-/- mice). In contrast, heart rate responses remained unchanged in M3 receptor-deficient mice (M3-/- mice). The reduced hypotensive response of M3-/- mice to MCh suggests M3 mAChRs contribute to peripheral vasodilation. The M2-/- mice showed significantly enhanced in vivo bronchoconstrictor responses to vagal stimulation or MCh administration. In contrast, bronchoconstrictor responses were totally abolished in M3-/- mice. Because altered cardiac or pulmonary vagal tone is involved in a number of pathophysiological conditions, including cardiac arrhythmias, chronic obstructive pulmonary disease and asthma, these results should be of considerable therapeutic relevance.
The findings demonstrate large variations in machine performance. The ventilators also differed profoundly in complexity of operation and versatility as neonatal ventilators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.