JunB, a member of the AP-1 family of dimeric transcription factors, is best known as a cell proliferation inhibitor, a senescence inducer, and a tumor suppressor, although it also has been attributed a cell divisionpromoting activity. Its effects on the cell cycle have been studied mostly in G 1 and S phases, whereas its role in G 2 and M phases still is elusive. Using cell synchronization experiments, we show that JunB levels, which are high in S phase, drop during mid-to late G 2 phase due to accelerated phosphorylation-dependent degradation by the proteasome. The forced expression of an ectopic JunB protein in late G 2 phase indicates that JunB decay is necessary for the subsequent reduction of cyclin A2 levels in prometaphase, the latter event being essential for proper mitosis. Consistently, abnormal JunB expression in late G 2 phase entails a variety of mitotic defects. As these aberrations may cause genetic instability, our findings contrast with the acknowledged tumor suppressor activity of JunB and reveal a mechanism by which the deregulation of JunB might contribute to tumorigenesis.
MicroRNAs are one class of small, endogenous, non-coding RNAs that are approximately 22 nucleotides in length; they are very numerous, have been phylogenetically conserved, and involved in biological processes such as development, differentiation, cell proliferation, and apoptosis. MicroRNAs contribute to modulating the expression levels of specific proteins based on sequence complementarity with their target mRNA molecules and so they play a key role in both health and disease. Angiogenesis is the process of new blood vessel formation from preexisting ones, which is particularly relevant to cancer and its progression. Over the last few years, microRNAs have emerged as critical regulators of signalling pathways in multiple cell types including endothelial and perivascular cells. This review summarises the role of miRNAs in tumour angiogenesis and their potential implications as therapeutic targets in cancer.
The relative expression of these three genes can be considered as an angiogenic gene signature whose applicability for the selection of candidates for targeted therapies needs to be further validated.
BackgroundThe average five-year survival for non-small cell lung cancer (NSCLC) patients is approximately 15%. Emerging evidence indicates that microRNAs (miRNAs) constitute a new class of gene regulators in humans that may play an important role in tumorigenesis. Hence, there is growing interest in studying their role as possible new biomarkers whose expression is aberrant in cancer. Therefore, in this study we identified dysregulated miRNAs by next generation sequencing (NGS) and analyzed their prognostic value.MethodsSequencing by oligo ligation detection technology was used to identify dysregulated miRNAs in a training cohort comprising paired tumor/normal tissue samples (N = 32). We validated 22 randomly selected differentially-expressed miRNAs by quantitative real time PCR in tumor and adjacent normal tissue samples (N = 178). Kaplan-Meier survival analysis and Cox regression were used in multivariate analysis to identify independent prognostic biomarkers.ResultsNGS analysis revealed that 39 miRNAs were dysregulated in NSCLC: 28 were upregulated and 11 were downregulated. Twenty-two miRNAs were validated in an independent cohort. Interestingly, the group of patients with high expression of both miRNAs (miR-21high and miR-188high) showed shorter relapse-free survival (RFS) and overall survival (OS) times. Multivariate analysis confirmed that this combined signature is an independent prognostic marker for RFS and OS (p = 0.001 and p < 0.0001, respectively).ConclusionsNGS technology can specifically identify dysregulated miRNA profiles in resectable NSCLC samples. MiR-21 or miR-188 overexpression correlated with a negative prognosis, and their combined signature may represent a new independent prognostic biomarker for RFS and OS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.