Intracerebral hemorrhage (ICH) has a poor prognosis that may be the consequence of the hematoma's effect on adjacent and remote brain regions. Little is known about the mechanism, location, and severity of such effects. In this study, rats subjected to intracerebral blood injection were examined at 100 days. Stereology (neuronal count and density) and volume measures in the perihematoma rim, the adjacent and overlying brain, and the substantia nigra pars reticulata (SNr) were compared with contralateral brain regions at 100 days and the perihemorrhage region at 24 hours and 7 days. In addition, cytochrome c release was investigated at 24 hours, 3 days, and 7 days. At 100 days, post-ICH rats showed no difference in neuronal density in the perihemorrhagic scar region or regions of the striatum immediately surrounding and distal to the perihemorrhage scar. The cell density index in the ipsilateral field was 16.2 +/- 3.8 versus the contralateral control field of 15.6 +/- 3.2 (not significant). Volume measurements of the ipsilateral striatum revealed a 20% decrease that was compensated by an increase in ipsilateral ventricular size. The area of the initial ICH as measured by magnetic resonance imaging correlated with the degree of atrophy. In the region immediately surrounding the hematoma, cytochrome c immunoreactivity increased at 24 hours and 3 days, and returned toward baseline by day 7. At 24 hours, stereology in the peri-ICH region showed decreased density in the region where cytochrome c immunoreactivity was the highest. Neuronal density of the ipsilateral SNr was significantly less than the contralateral side (9.6 +/- 1.9 vs 11.6 +/- 2.3). Histologic damage from ICH occurred mainly in the immediate perihemorrhage region. Except for SNr, we found no evidence of neuronal loss in distal regions. We have termed this continued destruction of neurons, which occurs over at least 3 days as the neurons come into proximity to the hematoma, the "black hole" model of hemorrhagic damage.
The mammalian CNS lacks the ability to effectively compensate for injury by the regeneration of damaged axons or axonal plasticity of intact axons. However, reports suggest that molecular or cellular manipulations can induce compensatory processes that could support regeneration or plasticity after trauma. We tested whether local, sustained release of the neurotrophic factor neurotrophin-3 (NT-3) would support axonal plasticity in the spinal cord distal to the site of injury in rats. The corticospinal tract (CST) was cut unilaterally at the level of the medulla. This avoided excessive inflammation, secondary cell death, vascular disruption, and the release of inhibitory molecules in the lumbar spinal cord. A replication-defective adenoviral vector (Adv) carrying the NT-3 gene (Adv.EFalpha-NT3) was delivered to the spinal motoneurons by retrograde transport through the sciatic nerve. Retrograde transport of the adenoviral vectors avoided the inflammatory response that would be associated with direct injection into the spinal cord. Transduction of spinal motoneurons with Adv.EFalpha-NT3 resulted in a significant increase in the concentration of NT-3 in the L3-L6 region of the spinal cord for up to 3 weeks. In animals with a CST lesion, this local expression of NT-3 induced growth of axons from the intact CST across the midline to the denervated side. If the CST remained intact, overexpression of NT-3 did not lead to an increase in the number of axons crossing the midline. These data demonstrate that local, sustained expression of NT-3 will support axonal plasticity of intact CST axons after trauma-induced denervation.
Astrocyte populations were analyzed over a period of 1 month in the hippocampus following lateral fluid percussion (FP) brain injury. Rats (n = 23) were subjected either to a brain injury of moderate severity, or to anesthesia and surgery without injury (n = 7). At 3 days, 1, 2, or 4 weeks postinjury, subgroups of animals were sacrificed and the brains removed and sectioned for histochemical analysis. The density of astrocytes, identified with gold sublimate staining, decreased significantly in the ipsilateral hippocampus of injured rats 3 days following injury, eventually falling to 64% of the total astrocyte population present in uninjured animals by 1 week postinjury. One month postinjury, the density of hippocampal astrocytes had returned to 85% of the total number of astrocytes observed in the hippocampus of uninjured animals. In order to characterize the post-traumatic formation of new astrocytes, immunohistochemistry was performed using antibodies to proliferating cell nuclear antigen (PCNA) and to glial fibriallary acidic protein (GFAP). Positive immunolabeling for both PCNA and GFAP was most abundant at 3 days following FP brain injury in regions where the blood brain barrier was compromised, and was not detectable by 1 month postinjury. These results indicate that astrocyte proliferation after injury may be evoked by mitogens released from vascular sources, and may be an attempt to compensate for some of the astrocytic cell loss observed after injury.
The roles of the Notch pathway proteins in normal adult vascular physiology and the pathogenesis of brain arteriovenous malformations are not well-understood. Notch 1 and 4 have been detected in human and mutant mice vascular malformations respectively. Although mutations in the human Notch 3 gene caused a genetic form of vascular stroke and dementia, its role in arteriovenous malformations development has been unknown. In this study, we performed immunohistochemistry screening on tissue microarrays containing eight surgically resected human brain arteriovenous malformations and 10 control surgical epilepsy samples. The tissue microarrays were evaluated for Notch 1–4 expression. We have found that compared to normal brain vascular tissue Notch-3 was dramatically increased in brain arteriovenous malformations. Similarly, Notch 4 labelling was also increased in vascular malformations and was confirmed by western blot analysis. Notch 2 was not detectable in any of the human vessels analysed. Using both immunohistochemistry on microarrays and western blot analysis, we have found that Notch-1 expression was detectable in control vessels, and discovered a significant decrease of Notch 1 expression in vascular malformations. We have demonstrated that Notch 3 and 4, and not Notch 1, were highly increased in human arteriovenous malformations. Our findings suggested that Notch 4, and more importantly, Notch 3, may play a role in the development and pathobiology of human arteriovenous malformations.
Astrocyte populations were analyzed over a period of 1 month in the hippocampus following lateral fluid percussion (FP) brain injury. Rats (n = 23) were subjected either to a brain injury of moderate severity, or to anesthesia and surgery without injury (n = 7). At 3 days, 1, 2, or 4 weeks postinjury, subgroups of animals were sacrificed and the brains removed and sectioned for histochemical analysis. The density of astrocytes, identified with gold sublimate staining, decreased significantly in the ipsilateral hippocampus of injured rats 3 days following injury, eventually falling to 64% of the total astrocyte population present in uninjured animals by 1 week postinjury. One month postinjury, the density of hippocampal astrocytes had returned to 85% of the total number of astrocytes observed in the hippocampus of uninjured animals. In order to characterize the post-traumatic formation of new astrocytes, immunohistochemistry was performed using antibodies to proliferating cell nuclear antigen (PCNA) and to glial fibriallary acidic protein (GFAP). Positive immunolabeling for both PCNA and GFAP was most abundant at 3 days following FP brain injury in regions where the blood brain barrier was compromised, and was not detectable by 1 month postinjury. These results indicate that astrocyte proliferation after injury may be evoked by mitogens released from vascular sources, and may be an attempt to compensate for some of the astrocytic cell loss observed after injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.