Inadequate vascularization of in vitro-engineered tissue constructs after implantation is a major problem in most tissue-engineering applications. In this study we evaluated whether adipose tissue-derived stromal cells (ASCs), similar to bone marrow-derived stromal cells (BMSCs), can support the organization of endothelial cells into prevascular-like structures using an in vitro model. In addition, we investigated the mechanisms leading to the support of endothelial organization by these cells. We cultured human umbilical vein endothelial cells (HUVECs), ASCs, and BMSCs either alone or in combination in fibrin-embedded spheroids for 14 days. We found that BMSCs and ASCs formed cellular networks that expressed alpha smooth muscle actin and, in the case of ASCs, also CD34. Further, BMSCs and ASCs secreted hepatocyte growth factor and tissue inhibitor of metalloproteinase 1 and 2. In addition, ASC-conditioned medium induced HUVEC outgrowth, whereas BMSC-conditioned medium and hepatocyte growth factor-supplemented medium did not. Finally, both BMSCs and ASCs supported HUVEC organization into prevascular-like structures when cocultured. Our results suggest that both BMSCs and ASCs can support the formation of prevascular-like structures in vitro. Further, our findings indicate that cell-cell contacts and reciprocal signaling play an important role in the formation of these prevascular structures.
BackgroundRecovery of thymopoiesis after allogeneic hematopoietic stem cell transplantation is considered pivotal for full immune competence. However, it is still unclear to what extent insufficient recovery of thymopoiesis predicts for subsequent opportunistic infections and non-relapse mortality.
Design and MethodsA detailed survey of all post-engraftment infectious complications, non-relapse mortality and overall survival during long-term follow-up was performed in 83 recipients of allogeneic stem cell grafts after myeloablative conditioning. Recovery of thymopoiesis was assessed using analysis of signal joint T-cell receptor rearrangement excision circles. The impact of recovery of thymopoiesis at 2, 6, 9 and 12 months post-transplantation on clinical outcome beyond those time points was evaluated by univariate and multivariate Cox regression analyses.
ResultsThe cumulative incidence of severe infections at 12 months after transplantation was 66% with a median number of 1.64 severe infectious episodes per patient. Patients in whom thymopoiesis did not recover were at significantly higher risk of severe infections according to multivariable analysis. Hazard ratios indicated 3-and 9-fold increases in severe infections at 6 and 12 months, respectively. Impaired recovery of thymopoiesis also translated into a higher risk of non-relapse mortality and outweighed pre-transplant risk factors including age, donor type, and disease risk-status.
ConclusionsThese results indicate that patients who fail to recover thymopoiesis after allogeneic hematopoietic stem cell transplantation are at very high risk of severe infections and adverse clinical outcome.Key words: thymopoiesis, opportunistic infections, transplantation outcome, TREC. Haematologica 2011;96(12):1846-1854. doi:10.3324/haematol.2011 This is an open-access paper.
Citation: Wils E-J, van der Holt B, Broers AEC, Posthumus-van Sluijs SJ, Gratama J-W, Braakman E and Cornelissen JJ. Insufficient recovery of thymopoiesis predicts for opportunistic infections in allogeneic hematopoietic stem cell transplant recipients.
Insufficient recovery of thymopoiesis predicts for opportunistic infections in allogeneic hematopoietic stem cell transplant recipients
Vascularization is still one of the most important limitations for the survival of engineered tissues after implantation. In this study, we aim to improve the in vivo vascularization of engineered adipose tissue by preforming vascular structures within in vitro-engineered adipose tissue constructs that can integrate with the host vascular system upon implantation. Different cell culture media were tested and different amounts of human adipose tissue-derived mesenchymal stromal cells (ASC) and human umbilical vein endothelial cells (HUVEC) were combined in spheroid cocultures to obtain optimal conditions for the generation of prevascularized adipose tissue constructs. Immunohistochemistry revealed that prevascular structures were formed in the constructs only when 20% ASC and 80% HUVEC were combined and cultured in a 1:1 mixture of endothelial cell medium and adipogenic medium. Moreover, the ASC in these constructs accumulated lipid and expressed the adipocyte-specific gene fatty acid binding protein-4. Implantation of prevascularized ASC/HUVEC constructs in nude mice resulted in a significantly higher amount of vessels (37 ± 17 vessels/mm 2 ) within the constructs compared to non-prevascularized constructs composed only of ASC (3 ± 4 vessels/mm 2 ). Moreover, a subset of the preformed human vascular structures (3.6 ± 4.2 structures/mm 2 ) anastomosed with the mouse vasculature as indicated by the presence of intravascular red blood cells. Our results indicate that preformed vascular structures within in vitro-engineered adipose tissue constructs can integrate with the host vascular system and improve the vascularization upon implantation.
In vitro adipogenic differentiation of hASCs improves their ability to support endothelial viable cell numbers and suggests that hASCs differentiated for a short period potentially improve angiogenic responses for in vivo implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.