To gain more insight into initiation and regulation of T cell receptor (TCR) gene rearrangement during human T cell development, we analyzed TCR gene rearrangements by quantitative PCR analysis in nine consecutive T cell developmental stages, including CD34+ lin− cord blood cells as a reference. The same stages were used for gene expression profiling using DNA microarrays. We show that TCR loci rearrange in a highly ordered way (TCRD-TCRG-TCRB-TCRA) and that the initiating Dδ2-Dδ3 rearrangement occurs at the most immature CD34+CD38−CD1a− stage. TCRB rearrangement starts at the CD34+CD38+CD1a− stage and complete in-frame TCRB rearrangements were first detected in the immature single positive stage. TCRB rearrangement data together with the PTCRA (pTα) expression pattern show that human TCRβ-selection occurs at the CD34+CD38+CD1a+ stage. By combining the TCR rearrangement data with gene expression data, we identified candidate factors for the initiation/regulation of TCR recombination. Our data demonstrate that a number of key events occur earlier than assumed previously; therefore, human T cell development is much more similar to murine T cell development than reported before.
This study shows for the first time that IL-1β, TNF-α and IL-10 levels are elevated in HS skin. These data provide a rationale for therapies with biologics targeting cytokines such as TNF-α and IL-1.
The C-Myb transcription factor is essential for hematopoiesis, including in the T-cell lineage. The C-Myb locus is a common site of retroviral insertional mutagenesis, however no recurrent genomic involvement has been reported in human malignancies. Here, we identified 2 types of genomic alterations involving the C-MYB locus at 6q23 in human T-cell acute leukemia (T-ALL). First, we found a reciprocal translocation, t(6;7)(q23;q34), that juxtaposed the TCRB and C-MYB loci (n ؍ 6 cases). Second, a genome-wide copy-number analysis by array-based comparative genomic hybridization (array-CGH) identified short somatic duplications that include C-MYB (MYB dup , n ؍ 13 cases of 84 T-ALL, 15%). Expression analysis, including allele-specific approaches, showed stronger C-MYB expression in the MYB-rearranged cases compared with other T-ALLs, and a dramatically skewed C-MYB allele expression in the TCRB-MYB cases, which suggests that a translocation-driven deregulated expression may overcome a cellular attempt to downregulate C-MYB. Strikingly, profiling of the T-ALLs by clinical, genomic, and largescale gene expression analyses shows that the TCRB-MYB translocation defines a new T-ALL subtype associated with a very young age for T-cell leukemia (median, 2.2 years) and with a proliferation/ mitosis expression signature. By contrast, the MYB dup alteration was associated with the previously defined T-ALL subtypes. (Blood.
An IFN type I signature is observed in patients with SSc from the earliest phases of the disease, even before overt skin fibrosis. The presence of IFN type I signature in monocytes is correlated with BAFF mRNA expression and serum PIIINP levels, supporting a contribution in the pathogenesis and progression of SSc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.