Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials’ behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated?
Many groups within the broad field of nanoinformatics are already developing data repositories and analytical tools driven by their individual organizational goals. Integrating these data resources across disciplines and with non-nanotechnology resources can support multiple objectives by enabling the reuse of the same information. Integration can also serve as the impetus for novel scientific discoveries by providing the framework to support deeper data analyses. This article discusses current data integration practices in nanoinformatics and in comparable mature fields, and nanotechnology-specific challenges impacting data integration. Based on results from a nanoinformatics-community-wide survey, recommendations for achieving integration of existing operational nanotechnology resources are presented. Nanotechnology-specific data integration challenges, if effectively resolved, can foster the application and validation of nanotechnology within and across disciplines. This paper is one of a series of articles by the Nanomaterial Data Curation Initiative that address data issues such as data curation workflows, data completeness and quality, curator responsibilities, and metadata.
N4mics facilitates the identification of correlations between nanomaterial characteristics and biological responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.