The conditions of globalization often dictate the functioning of transport markets, so it is necessary to conduct frequent research in order to achieve sustainable business. This is achieved through adequate risk and safety management at all levels. The research carried out in this paper includes determining the state of railway traffic safety in a total of nine railway sections in Bosnia and Herzegovina (B&H). The aim of this paper is to develop a new integrated Entropy-Fuzzy PIPRECIA (PIvot Pairwise RElative Criteria Importance Assessment)-DEA (Data Envelopment Analysis) model for determining the state of safety in B&H under particular conditions of uncertainty. Additionally, the aim is to combine the advantages of linear programming (DEA), an objective method (Entropy), and a subjective method (Fuzzy PIPRECIA). In this way, an integrated objective–subjective model is created that provides accurate and balanced decision-making through their integration. Eleven sustainable criteria were defined and divided into six inputs and five outputs. The Entropy model was used to determine the weight values of the inputs, while due to the nature of the outputs, Fuzzy PIPRECIA was used to evaluate them. After the application of the two methods, the way of averaging their values was defined. The DEA model, which implies an input- and output-oriented model, was applied to determine which railway sections have satisfactory performance in terms of safety. Two sections were eliminated from further computation due to extremely poor performance and high risk. Then, the weighted overall efficiency ranking method was applied to determine the final ranking of the railway sections. The results obtained were verified through a sensitivity analysis, which involved changing the impact of the five most significant criteria and a comparison with two Multi-Criteria Decision-Making (MCDM) methods.
Sustainable traffic system management under conditions of uncertainty and inappropriate road infrastructure is a responsible and complex task. In Bosnia and Herzegovina (BiH), there is a large number of level crossings which represent potentially risky places in traffic. The current state of level crossings in BiH is a problem of the greatest interest for the railway and a generator of accidents. Accordingly, it is necessary to identify the places that are currently a priority for the adoption of measures and traffic control in order to achieve sustainability of the whole system. In this paper, the Šamac–Doboj railway section and passive level crossings have been considered. Fifteen different criteria were formed and divided into three main groups: safety criteria, road exploitation characteristics, and railway exploitation characteristics. A novel integrated fuzzy FUCOM (full consistency method)—fuzzy PIPRECIA (pivot pairwise relative criteria importance assessment) model was formed to determine the significance of the criteria. When calculating the weight values of the main criteria, the fuzzy Heronian mean operator was used for their averaging. The evaluation of level crossings was performed using fuzzy MARCOS (measurement of alternatives and ranking according to compromise solution). An original integrated fuzzy FUCOM–Fuzzy PIPRECIA–Fuzzy MARCOS model was created as the main contribution of the paper. The results showed that level crossings 42 + 690 (LC4) and LC8 (82 + 291) are the safest considering all 15 criteria. The verification of the results was performed through four phases of sensitivity analysis: resizing of an initial fuzzy matrix, comparative analysis with other fuzzy approaches, simulations of criterion weight values, and calculation of Spearman’s correlation coefficient (SCC). Finally, measures for the sustainable performance of the railway system were proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.