The evaluation and selection of an optimal, efficient and reliable supplier is becoming more and more important for companies in today’s logistics and supply chain management. Decision-making in the supplier selection domain, as an essential component of the supply chain management, is a complex process since a wide range of diverse criteria, stakeholders and possible solutions are embedded into this process. This paper shows a fuzzy approach in multi – criteria decision-making (MCDM) process. Criteria weights have been determined by fuzzy SWARA (Step-wise Weight Assessment Ratio Analysis) method. Chosen methods, fuzzy TOPSIS (Technique for the Order Preference by Similarity to Ideal Solution), fuzzy WASPAS (Weighted Aggregated Sum Product Assessment) and fuzzy ARAS (Additive Ratio Assessment) have been used for evaluation and selection of suppliers in the case of procurement of THK Linear motion guide components by the group of specialists in the “Lagerton” company in Serbia. Finally, results obtained using different MCDM approaches were compared in order to help managers to identify appropriate method for supplier selection problem solving.
Active systems have attracted a great deal of attention in the last few decades due to the potential benefits they offer over the conventional passive systems in various applications. Dealing with active systems requires the possibility of modeling and simulation of their behavior. The paper considers thin-walled active structures with laminate architecture featuring fiber reinforced composite as a passive material and utilizing piezoelectric patches as both sensor and actuator components. The objective is the development of numerically effective finite element tool for their modeling. A 9-node degenerate shell element is described in the paper and the main aspects of the application of the element are discussed through a set of numerical examples.
The article considers thin-walled active structures, which utilize the piezoelectric patches as both sensor and actuator components. Most of the developed models for this type of application make an assumption of a constant electric field and, consequently, a linear distribution of the electric potential over the thickness of the piezopatches. Some recent papers use higher-order functions to model the mentioned electric quantities. In the study, it is demonstrated through an analytical deduction that a quadratic distribution of the electric potential and a linear distribution of the electric field are adequate for the piezoelectric patch that exhibits kinematics described by a first-order two-dimensional theory. A degenerated shell element is developed for modeling purposes and a set of numerical analyses is performed in order to demonstrate the additional stiffening effect caused by the refined functions for the electric quantities. The significance of the effect is discussed in detail.
In this paper, we investigate the multi-criteria decision-making complications under intuitionistic fuzzy hypersoft set (IFHSS) information. The IFHSS is a proper extension of the intuitionistic fuzzy soft set (IFSS) which discusses the parametrization of multi-sub attributes of considered parameters, and accommodates more hesitation comparative to IFSS utilizing the multi sub-attributes of the considered parameters. The main objective of this research is to introduce operational laws for intuitionistic fuzzy hypersoft numbers (IFHSNs). Additionally, based on developed operational laws two aggregation operators (AOs), i.e., intuitionistic fuzzy hypersoft weighted average (IFHSWA) and intuitionistic fuzzy hypersoft weighted geometric (IFHSWG), operators have been presented with their fundamental properties. Furthermore, a decision-making approach has been established utilizing our developed aggregation operators (AOs). Through the established approach, a technique for solving decision-making (DM) complications is proposed to select sustainable suppliers in sustainable supply chain management (SSCM). Moreover, a numerical description is presented to ensure the validity and usability of the proposed technique in the DM process. The practicality, effectivity, and flexibility of the current approach are demonstrated through comparative analysis with the assistance of some prevailing studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.