Composting of manure may lead to the degradation of veterinary antimicrobials, but it is largely unknown if the presence of antimicrobials affects the composting process. Open-air windrow composting of manure from beef cattle (Bos taurus) administered chlortetracycline, sulfamethazine, and tylosin was investigated in a 2-yr study. At windrow construction, chlortetracycline had extensively isomerized to iso-chlortetracycline. Sulfamethazine, tylosin, and iso-chlortetracycline dissipated by first-order kinetics, whereas the dissipation of enol/keto-chlortetracycline was better described by exponential equations. At the end of the composting period, proportions of antimicrobials remaining were as follows: iso-chlortetracycline (< 1%), chlortetracycline (1 to 4.5%), tylosin (6.3%), and sulfamethazine (6.8% [2005], 41% [2006]). Times for 50% dissipation (DT50) decreased in the order: tylosin (20.3 to 43.5 d) > iso-chlortetracycline (13.5 to 26.5 d) > enol/keto-chlortetracycline (5.5 to 9.8 d). The DT50 values for sulfamethazine varied from 26.8 d in 2005 to 237 d in 2006. Treatments with chlortetracycline showed significantly reduced temperature rises (10.1 to 11.0 degrees C) between Days 21 to 28 in 2006 compared with rises of 26.6 to 31.0 degrees C for control and tylosin treatments, suggesting an inhibition of microbial activity. During composting in 2005, manure from cattle administered chlortetracycline at 44 mg kg(-1) of feed lost significantly less dry matter, carbon, and nitrogen than manure from cattle fed 11 mg chlortetracycline kg(-1) of feed, implying that the higher level of chlortetracycline inhibited microbial decomposition of organic matter. The study shows that while composting leads to dissipation of antimicrobials, the microbially driven composting process may be inhibited by their presence.
Phthalates have been used extensively as plasticizers to improve the flexibility of polymers, and they also have found many industrial applications. They are ubiquitous in the environment and have been detected in a variety of environmental and biological matrices. The goal of this study was to develop a method for the determination of 17 phthalate esters in house dust. This method involved sonication extraction, sample cleanup using solid phase extraction, and isotope dilution GC/MS/MS analysis. Method detection limits (MDLs) and recoveries ranged from 0.04 to 2.93 μg/g and from 84 to 117%, respectively. The method was applied to the analysis of phthalates in 38 paired household vacuum samples (HD) and fresh dust (FD) samples. HD and FD samples compared well for the majority of phthalates detected in house dust. Data obtained from 126 household dust samples confirmed the historical widespread use of bis(2-ethylhexyl) phthalate (DEHP), with a concentration range of 36 μg/g to 3840 μg/g. Dibutyl phthalate (DBP), benzyl butyl phthalate (BzBP), diisononyl phthalate (DINP), and diisodecyl phthalate (DIDP) were also found in most samples at relatively high concentrations. Another important phthalate, diisobutyl phthalate (DIBP), was detected at a frequency of 98.4% with concentrations ranging from below its MDL of 0.51 μg/g to 69 μg/g.
Livestock manure containing antimicrobials becomes a possible source of these compounds to surface and ground waters when applied to cropland as a nutrient source. The potential for transport of the veterinary antimicrobial lincomycin to surface waters via surface runoff and to leach to ground water was assessed by monitoring manure-amended soil, simulated rainfall runoff, snowmelt runoff, and ground water over a 2-yr period in Saskatchewan, Canada, after fall application of liquid swine manure to cropland. Liquid chromatography tandem mass spectrometry was used to quantify lincomycin in all matrix extracts. Initial concentrations in soil (46.3-117 mug kg(-1)) were not significantly different (p > 0.05) for manure application rates ranging from 60,000 to 95,000 L ha(-1) and had decreased to nondetectable levels by mid-summer the following year. After fall manure application, lincomycin was present in all simulated rainfall runoff (0.07-2.7 mug L(-1)) and all snowmelt runoff (0.038-3.2 mug L(-1)) samples. Concentrations in snowmelt runoff were not significantly different from those in simulated rainfall runoff the previous fall. On average, lincomycin concentrations in ephemeral wetlands dissipated by 50% after 31 d. Concentrations of lincomycin in ground water were generally <0.005 mug L(-1). This study demonstrates that the management practice of using livestock manure from confined animal feeding operations as a plant nutrient source on cropland may result in antimicrobial transport to surface and ground waters.
Antimicrobials administered to livestock can be excreted up to 75% in the feces and urine. Liquid swine manure from confined animal feeding operations is generally retained in lagoon storage until it is applied as a nutrient source to crop and pasture land. Thus, the applied manure becomes a possible source of antimicrobials to aquatic ecosystems. In the prairie region of Canada, lincomycin and spectinomycin are two antimicrobials that are frequently administered to pigs for prevention of post-weaning diarrhea. In order to assess the potential for contamination of prairie wetlands, concentrations of both antimicrobials were monitored in liquid manure from a commercial-scale barn during a 5-week study, and their persistence during simulated manure storage was investigated. LC-MS/MS analysis of manure extracts showed that concentrations of lincomycin and spectinomycin in the accumulating liquid manure at the end of the study were equivalent to 32 and 3%, respectively, of the doses administered to weanling pigs in their feed. In a laboratory study in which lagoon storage was simulated at room temperature using fortified liquid manure, concentrations of both antimicrobials showed a rapid initial decrease during the first 6 days, followed by a much slower dissipation, over a period of 5 months. Such persistence indicates that lincomycin and spectinomycin may be present in lagoon manure when applied as an amendment to agricultural land since many lagoons are emptied every 6 months (early spring and late fall).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.