Marine dissolved organic matter (DOM) in surface and deep waters of the eastern Atlantic Ocean and Sargasso Sea was analyzed by excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC). Photo-degradation with semi-continuous monitoring of EEMs and absorbance spectra was used to measure the photo-degradation kinetics and changes of the PARAFAC components in a depth profile of DOM at the Bermuda Atlantic Time Series (BATS) station in the Sargasso Sea. A five component model was fit to the EEMs, which included traditional terrestrial-like, marine-like, and protein-like components. Terrestrial-like components showed the expected high photo-reactivity, but surprisingly, the traditional marine-like peak showed slight photo-production in surface waters, which may account for its prevalence in marine systems. Surface waters were depleted in photo-labile components while protein-like fluorescent components were enriched, consistent with previous studies. Ultra-high resolution mass spectrometry detected unique aliphatic compounds in the surface waters at the BATS site, which may be photo-produced or photo-stable. Principle component and canonical analysis showed strong correlations between relative contributions of unsaturated/aromatic molecular formulas and depth, with aliphatic compounds more prevalent in surface waters and aromatic compounds in deep waters. Strong correlations were seen between these aromatic compounds and humic-like fluorescent components. The rapid photo-degradation of the deep-sea fluorescent DOM in addition to the surface water relative depletion of aromatic compounds suggests that deep-sea fluorescent DOM may be too photochemically labile to survive during overturning circulation.
Conjugated polymers with high electrical conductivities are attractive for applications in capacitors, biosensors, organic thermoelectrics, and transparent electrodes. Here, a series of solution processable dioxythiophene copolymers based on 3,4‐propylenedioxythiophene (ProDOT) and 3,4‐ethylenedioxythiophene (EDOT) is investigated as thermoelectric and transparent electrode materials. Through structural manipulation of the polymer repeat unit, the conductivity of the polymers upon oxidative solution doping is tuned from 1 × 10−3 to 3 S cm−1, with a polymer consisting of a solubilizing alkylated ProDOT unit and an electron‐rich biEDOT unit (referred to as PE2) showing the highest electrical conductivity. Optimization of the film casting method and screening of dopants result in AgPF6‐doped PE2 achieving a high electrical conductivity of over 250 S cm−1 and a thermoelectric power factor of 7 μW m−1 K−2. Oxidized spray cast films of PE2 are also assessed as a transparent electrode material for use with another electrochromic polymer. This bilayer shows reversible electrochemical switching from a colored charge‐neutral state to a highly transmissive color‐neutral, oxidized state. These results demonstrate that dioxythiophene‐based copolymers are a promising class of materials, with ProDOT–biEDOT serving as a soluble analog to the well‐studied PEDOT as a p‐type thermoelectric and electrode material.
A new family of redox-active dioxythienothiophene (DOTT) polymers are studied for their solid state ordering and doping susceptibility, along with their optical and electronic properties.
To achieve optimal performance in a conjugated polymer-based electrochemical device, i.e. for a supercapacitor to reach full depth of discharge or for an electrochromic device (ECD) to achieve maximum contrast, the two electrodes must be in different oxidation states when the device is assembled. Here, we evaluate the use of chemical oxidation as a scalable postprocessing method to adjust the redox state of polymer-coated electrodes. We evaluate how the extent of oxidation depends on both the redox properties of the conjugated polymer and on the choice of chemical oxidant, and how these parameters affect the functionality of the film. Comparing Ag(I) and Fe(III) oxidants, we find that it is not the oxidizing power that determines the extent of doping but rather the redox potentials of the polymers, with the more easily oxidized polymers doping to a higher extent. Because the polarity and surface energy of the polymer changes upon oxidation, we also show how a phosphonic acid surface pre-treatment improves interfacial adhesion between the polymer and a transparent oxide electrode (ITO). Finally, as a proof of principle, we demonstrate how chemical oxidation of the organic counter electrode a minimally color changing dioxypyrrole polymer enhances the device contrast of an ECD, confirming that this approach is a promising route toward high-throughput manufacturing of ECDs and other polymer-based electrochemical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.