Research on the mechanisms of bilirubin-induced neurological dysfunction focuses mainly on neuronal death, astrocyte-mediated events and microglia activation. Although myelin damage by unconjugated bilirubin (UCB) has been documented in neonatal kernicterus cases, the events leading to myelination impairment were never explored. This condition may occur by reduced oligodendrocyte precursor cells (OPC) number, or failure of OPC to differentiate in myelinating oligodendrocytes. We have shown that UCB elicits an inflammatory response, glutamate release and reactive oxygen species (ROS) generation in neurons and glial cells, biomolecules with toxic properties on OPC. Hence, we propose to examine whether UCB determines OPC demise and, if so, which signaling pathways are involved. Our results show that OPC display increased apoptosis and necrosis-like cell death upon UCB exposure, mediated by early signals of endoplasmic reticulum (ER) stress [e.g. upregulation of glucose-regulated protein (GRP)78, inositol-requiring enzyme (IRE)-1α and activation transcription factor (ATF)-6, as well as activation of caspase-2 and c-Jun N-terminal kinase (JNK)], followed by mitochondrial dysfunction (e.g. loss of mitochondria membrane potential and caspase-9 activation). The later calpain activation points to intracellular Ca(2+) overload and intervention of both ER and mitochondria. Downstream production of ROS may derive from mitochondria damage and secondary injuries, possibly determining the second cycle of GRP78, IRE-1α, caspase-2 and JNK activation. Moreover, inhibition of caspases, calpains and oxidative stress, by using specific inhibitors, prevented UCB-induced OPC death. UCB did not induce the release of cytokines or glutamate by OPC. These results indicate that UCB by reducing OPC survival, through a cascade of programmed intracellular events triggered by ER stress and mitochondria dysfunction, can compromise myelinogenesis.
Jaundice and sepsis are common neonatal conditions that can lead to neurodevelopment sequelae, namely if present at the same time. We have reported that tumor necrosis factor (TNF)-α and interleukin (IL)-1β are produced by cultured neurons and mainly by glial cells exposed to unconjugated bilirubin (UCB). The effects of these cytokines are mediated by cell surface receptors through a nuclear factor (NF)-κB-dependent pathway that we have showed to be activated by UCB. The present study was designed to evaluate the role of TNF-α and IL-1β signaling on astrocyte reactivity to UCB in rat cortical astrocytes. Exposure of astrocytes to UCB increased the expression of both TNF-α receptor (TNFR)1 and IL-1β receptor (IL-1R)1, but not TNFR2, as well as their activation, observed by augmented binding of receptors' molecular adaptors, TRAF2 and TRAF6, respectively. Silencing of TNFR1, using siRNA technology, or blockade of IL-1β cascade, using its endogenous antagonist, IL-1 receptor antagonist (IL-1ra), prevented UCB-induced cytokine release and NF-κB activation. Interestingly, lack of TNF-α signal transduction reduced UCB-induced cell death for short periods of incubation, although an increase was observed after extended exposure; in contrast, inhibition of IL-1β cascade produced a sustained blockade of astrocyte injury by UCB. Together, our data show that inflammatory pathways are activated during in vitro exposure of rat cortical astrocytes to UCB and that this activation is prolonged in time. This supports the concept that inflammatory pathways play a role in brain damage by UCB, and that they may represent important pharmacological targets.
Hyperbilirubinemia remains one of the most frequent clinical diagnoses in the neonatal period. This condition may lead to the deposition of unconjugated bilirubin (UCB) in the central nervous system, causing nerve cell damage by molecular and cellular mechanisms that are still being clarified. To date, all the studies regarding bilirubin-induced neurological dysfunction were performed in monotypic nerve cell cultures. The use of co-cultures, where astrocyte-containing culture inserts are placed on the top of neuron cultures, provides the means to directly evaluate the cross-talk between these two different cell types. Therefore, this study was designed to evaluate whether protective or detrimental effects are produced by astrocytes over UCB-induced neurodegeneration. Our experimental model used an indirect co-culture system where neuron-to-astrocyte signaling was established concomitantly with the 24 h exposure to UCB. In this model astrocytes abrogated the well-known UCB-induced neurotoxic effects by preventing the loss of cell viability, dysfunction and death by apoptosis, as well as the impairment of neuritic outgrowth. To this protection it may have accounted the induced expression of the multidrug resistance-associated protein 1 and the 3.5-fold increase in the values of S100B, when communication between both cells was established independently of UCB presence. In addition, the presence of astrocytes in the neuronal environment preserved the UCB-induced increase in glutamate levels, but raised the basal concentrations of nitric oxide and TNF-α although no UCB effects were noticed. Our data suggest that bidirectional signalling during astrocyte-neuron recognition exerts pro-survival effects, stimulates neuritogenesis and sustains neuronal homeostasis, thus protecting cells from the immediate UCB injury. These findings may help explain why irreversible brain damage usually develops only after the first day of post-natal life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.