Background This study compared the frictional force resulting from the bracket/archwire interface and the stress at the root/periodontal ligament/bone interface, between passive self-ligating brackets and conventionally ligated brackets, during the space closure stage. Material and Methods A cone beam tomography was taken to a female patient that required extraction of upper first premolars and passive self-ligating system; three months after its activation, a cone beam tomography was taken again. The designs of the maxillary bone and the entire system were possible through tomography images and stereomicroscopic photographs. Validation of the Finite Element Method (FEM) was achieved comparing the amount of movement seen through tomography images and the FEM. Space closure was simulated for each system through the FEM and a comparison was made between the frictional force at the bracket/archwire interface, and the root/periodontal ligament/bone interface. Results The most significant representation of frictional force at bracket/archwire interface and bone stress was found at the conventionally ligated system, while the passive self-ligating system accounted for the highest distribution of stress over the root. Conclusions The FEM is an accurate tool used to quantify frictional force and stress concentration during the orthodontic closure. The passive self-ligating system was seen less frictional during the closure state compared to conventional brackets. Key words: Friction, orthodontic bracket, finite element analysis.
Background: to compare the frictional resistance between passive self-ligating brackets and conventional brackets with low-friction ligature under bracket/archwire and root/bone interface during dental alignment and leveling. Material and Methods: a tridimensional model of the maxilla and teeth of a patient treated with conventional brackets, and slide ligatures was generated employing the SolidWorks modeling software. SmartClip self-ligating brackets and Logic Line conventional brackets were assembled with slide low-friction ligatures, utilizing archwires with different diameters and alloys used for the alignment and leveling stage. Friction caused during the bracket/ archwire interface and stress during the bone/root interface were compared through a finite element model. Results: SmartClip and Logic Line brackets with slide elastomeric low-friction elastomeric ligature showed similar frictional stress values of 0.50 MPa and 0.64 MPa, respectively. Passive self-ligating brackets transmitted a lower load along the periodontal ligament, compared to conventional brackets with a low-friction ligature. Conclusions: Slide low-friction elastomeric ligatures showed frictional forces during the bracket/archwire interface similar to those of the SmartClip brackets, while the distribution of stresses and deformations during the root/bone interface were lower in the passive self-ligating brackets.
Background: Rapid maxillary expansion (RME) has effects on the dental and periodontal structures of the parts involved, which vary according to the design and position of the expansion screw. The purpose of the study was to determine the optimal three-dimensional position of the Hyrax screw to obtain precise control of the dental movement and effect on the bone cortex using the finite element method (FEM). Material and Methods: RME was performed from the patient whom two Cone-Beam computerized tomography scans (CBCT) were obtained: T1 before expansion, and T2 three months after stabilization of RME. The FEM model was designed with T1 and of Hyrax photographs. FEM was obtained by comparing the simulation, T2, and clinical results. Three sagittal screw positions (anterior-middle-posterior) and vertical (upper-medium-low) were evaluated. Results: A coronal-buccal displacement of premolars and first molars was found which decreased in the occlusal-apical direction, presenting different types of dental movement in the screw positions; besides, a tendency of translational movement in the posterior-high location was observed. In the posterior-high position a higher concentration of efforts and homogeneous deformations in the periodontal ligament and vestibular cortex of the cervical area of first molars, first and second premolars were observed, with variations according to the screw position and the distribution of stresses. Conclusions: The ideal location of the expansion screw for controlling dental movement and periodontal side effects was the high-posterior position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.