In the field of drive technology, plain bearings are used in almost all drives. During operation these bearings have a very low load resistance and almost no wear. However, increased mixed friction can occur during starts, stops, low speeds and/or high loads. As a result of the increasing demands on the drive systems, such as in the automotive sector with the automatic start-stop system to reduce exhaust gases or in the area of the angular force, a greater mixed friction occurs, which increases wear. Extreme High-Speed Laser Material Deposition (EHLA) is a coating process that allows the application of cor-rosion and wear protection coatings in a resource-saving and productive manner. Furthermore, alterna-tive materials and material combinations can be created. In the framework of this study two different Metal Matrix Composites (MMC) are tribologically investigated and characterized in the area of mixed friction against three friction contacts each.
Metal powder bed-based Additive Manufacturing (AM) technologies, such as Electron Beam-Melting (EBM) and Laser Powder Bed Fusion (LPBF), are established in several industries due to the large design freedom and mechanical properties. While EBM and LPBF have similar operating steps, process-specific characteristics influence the component design. The differences in the energy coupling lead to differing solidification conditions, microstructures, and, thus, mechanical properties. The surface finish and geometrical accuracy are also affected. As opposed to LPBF, EBM powder layers are preheated prior to selective melting. In this study, similar volume energy densities in LPBF and EBM were used to manufacture Ti6Al4V test geometries to assess the process transferability. Since the energy coupling of LPBF and EBM differ, heat source absorption was considered when calculating the volume energy density. Even when a similar volume energy density was used, significant differences in the component quality were found in this study due to specific respective process constraints. The extent of these constrains was investigated on voluminous samples and support-free overhanging structures. Overhang angles up to 90° were manufactured with LPBF and EBM, and characterized with regard to the relative density, surface roughness, and geometric compliance.
High pressure die casting (HPDC) tools undergo several repairs during their life cycle. Traditional repair methods (e.g., welding) cannot always be applied on damaged tools, necessitating complete replacement. Usually, direct energy deposition (DED) is considered and applied to repair tools. In this study, the potential of laser powder bed fusion (LPBF) for HPDC tool repair is investigated. LPBF of the hot work tool steel 1.2343/H11 normally requires preheating temperatures above 200 °C to overcome cracking. Therefore, a process window for the crack-susceptible hot work tool steel 1.2343/H11 with no preheating was developed to avoid preheating an entire preform. Laser power, hatch distance, and scan speed are varied to maximize relative density. Since the correlation of LPBF process parameters and resulting build quality is not fully understood yet, the relationship between process parameters and surface roughness is statistically determined. The identification of suitable process parameters with no preheating allowed crack-free processing of 1.2343/H11 tool steel via LPBF in this study. The LPBF repair of a volume of ~2000 cm3 was successfully carried out and microstructurally and mechanically characterized. A special focus lays on the interface between the worn HPDC tool and additive reconstruction, since it must withstand the mechanical and thermal loads during the HPDC process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.