We developed a procedure for growing normal epidermal keratinocyte stem cells isolated from a single punch biopsy of adult human skin in long-term culture. Primary skin epithelial cells were maintained in collagen-coated plates with irradiated human neonatal foreskin fibroblasts (line HPI.1) as a feeder for more than 120 days, approximately 115 population doublings, without signs of replicative senescence. Clonal analysis revealed the presence of holoclones, meroclones, and paraclones. Only emerging colonies with high proliferative potentials and extensive capacities for division (holoclones and meroclones) were subcultured, favoring the expansion of stem cells and progenitors capable of prolonged self-maintenance when subcloned, thus accounting for the prevailing long-term proliferation of the original culture. We found that meroclones included bipotent progenitors capable of generating both keratinocytes and mucin-producing cells. The numbers of these cells were greater after confluence, suggesting that commitment for their differentiation occurred late in the life of a single clone. On a three-dimensional gelatin matrix and on a collagen layer containing the fibroblast feeder, cells isolated from the expansion of holoclones and meroclones formed stratified cohesive layers of keratinocytes that were able to further differentiate, as in normal skin. These results indicate that our procedure will serve as a valuable tool to study expansion of epidermal stem cells as well as the growth mechanisms and cell products associated with their growth and differentiation.
We investigated the fate of human cord blood CD133+ hematopoietic stem cells (HSC) transplanted intravenously (IV) into irradiated nod-scid mice previously made deaf by ototoxic treatment with kanamycin and/ or intense noise, to verify whether HSC engraft the cochlea and contribute to inner ear restoration, in vivo. We tested the presence of HLA.DQalpha1 by PCR, used for traceability of engrafted cells, finding evidence that HSC migrated to various host tissues, including the organ of Corti (OC). By histology, antibody and lectin-staining analysis, we confirmed that HSC IV transplantation in mice previously damaged by ototoxic agents correlated with the repair process and stimulation ex novo of morphological recovery in the inner ear, while the cochlea of control oto-injured, nontransplanted mice remained seriously damaged. Dual color FISH analysis also provided evidence of positive engraftment in the inner ear and in various mouse tissues, also revealing small numbers of heterokaryons, probably derived from fusion of donor with endogenous cells, for up to 2 months following transplantation. These observations offer the first evidence that transplanted human HSC migrating to the inner ear of oto-injured mice may provide conditions for the resumption of deafened cochlea, emerging as a potential strategy for inner ear rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.