To assess the prevalence of Toxoplasma gondii infection in native and commensal rodents as indicators of environmental pollution, we analyzed brain tissue from small mammals collected on legal and illegal waste sites in the Slovenian and Croatian parts of Istria. A total of 136 animals and five species of the family Muridae were analyzed: black rat (Rattus rattus), domestic mouse (Mus musculus), wood mouse (Apodemus sylvaticus), striped field mouse (Apodemus agrarius), and yellow-necked mouse (Apodemus flavicollis). Using quantitative Polymerase Chain Reaction (qPCR), T. gondii DNA was detected in four homogenized brain tissue samples (2.94%), from all of the analyzed species, except black rat. Out of these, two samples, domestic mouse (Mus musculus) and wood mouse (Apodemus sylvaticus) had sufficient DNA for genotyping of T. gondii isolates in which we demonstrated the presence of clonal type II using RFLP PCR with four markers (SAG1, SAG2, GRA6 and GRA7). Three of four infected animals (75%) were collected on dumpsites.
Disease control and containment in free-ranging populations is one of the greatest challenges in wildlife management. Despite the importance of major histocompatibility complex (MHC) genes for immune response, an assessment of the diversity and occurrence of these genes is still rare in European roe deer, the most abundant and widespread large mammal in Europe. Therefore, we examined immunogenetic variation in roe deer in Slovenia to identify species adaptation by comparing the genetic diversity of the MHC genes with the data on neutral microsatellites. We found ten MHC DRB alleles, three of which are novel. Evidence for historical positive selection on the MHC was found using the maximum likelihood codon method. Patterns of MHC allelic distribution were not congruent with neutral population genetic findings. The lack of population genetic differentiation in MHC genes compared to existing structure in neutral markers suggests that MHC polymorphism was influenced primarily by balancing selection and, to a lesser extent, by neutral processes such as genetic drift, with no clear evidence of local adaptation. Selection analyses indicated that approx. 10% of amino acids encoded under episodic positive selection. This study represents one of the first steps towards establishing an immunogenetic map of roe deer populations across Europe, aiming to better support science-based management of this important game species.
Across its pan-European distribution, the European roe deer (Capreolus capreolus) faces a wide diversity of environmental and climatic conditions; therefore, several factors, including intrinsic ones, shape life-history traits and cause significant variability in parameters of fitness. By utilizing microsatellite variations in 214 roe deer females collected throughout Slovenia, Central Europe, we determined the genetic variability and population structure of this species in the contact zone between the Alps and the Dinaric Mountains, i.e., over a wider area where data on the genetic outlook for this—the most common and widespread European wild ungulate—have been completely lacking so far. Throughout the country, we found moderate microsatellite diversity (Ho = 0.57–0.65) in relation to the observed heterozygosity reported for other roe deer populations in Europe. Spatial differences in genetic diversity of the species in Slovenia can be explained by population history linked to varying approaches to population management and/or different connectivity among subpopulations in topographically differentiated habitats. A country-wide pattern of genetic structure is clearly defined by separation of the populations into three groups present in the following regions: (i) Southern sub-Mediterranean and Karst regions, (ii) Central Slovenia, and (iii) the Sub-Pannonian Region in the north-east. This is also confirmed by evidencing a moderate isolation by distance, especially by separating southern samples (coastal Slovenia) from others. Levels of genetic differentiation vary among populations, which can be explained by the effect of natural geographical barriers or the presence of anthropogenic barriers such as urban areas and highways. In the subset of 172 yearling females, we analyzed the influence of genetic advantage (individual heterozygosity) and other genetic data (reflected in the structuring of the population) on body mass and reproductive ability. We found evidence that genetic factors influence the body mass of roe deer yearling females (explaining altogether 18.8% of body mass variance), and the level of individual heterozygosity alone also positively affected body mass, which is in accordance with the theory that heterozygosity is commonly positively correlated with fitness in wild populations. However, we did not uncover any effect of heterozygosity on two parameters of reproductive ability (fertility and potential reproductive outcome), indicating that several other factors, especially environmental ones, have a predominant effect on the parameters of fitness in roe deer.
Genetic characterisation of wild ungulates can be a useful tool in wildlife management and in obtaining a greater understanding of their biological and ecological roles in a wider spatiotemporal context. Different ways of optimising methodologies and reducing the costs of genetic analyses using widely available bone tissues collected within regular hunting allocations were examined. Successful isolation and analysis of DNA from widely available bones can be cheap, fast and easy. In particular, this study explored the possibility of using bones for extracting high quality nuclear DNA for microsatellite analysis. The utility of applying a modified demineralisation process using two commercially available DNA isolation kits, which differ significantly in price, was evaluated. The sample sets included bones and, for comparison, muscle tissues from four wild ungulate species: chamois (Rupicapra rupicapra), roe deer (Capreolus capreolus), wild boar (Sus scrofa), and Alpine ibex (Capra ibex). For the recent bones, these results confirmed that the DNA concentrations and microsatellite amplification were sufficiently high, even when using low-cost kits, after prior demineralisation. For old bones, prior demineralisation and use of a specially designed isolation kit led to a more successful extraction of DNA. Besides reducing kit-related costs, low-cost kits are much faster and therefore make genetic analysis more efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.