SUMMARYTwo-dimensional shallow water models with porosity appear as an interesting path for the large-scale modelling of oodplains with urbanized areas. The porosity accounts for the reduction in storage and in the exchange sections due to the presence of buildings and other structures in the oodplain. The introduction of a porosity into the two-dimensional shallow water equations leads to modiÿed expressions for the uxes and source terms. An extra source term appears in the momentum equation. This paper presents a discretization of the modiÿed uxes using a modiÿed HLL Riemann solver on unstructured grids. The source term arising from the gradients in the topography and in the porosity is treated in an upwind fashion so as to enhance the stability of the solution. The Riemann solver is tested against new analytical solutions with variable porosity. A new formulation is proposed for the macroscopic head loss in urban areas. An application example is presented, where the large scale model with porosity is compared to a reÿned ow model containing obstacles that represent a schematic urban area. The quality of the results illustrates the potential usefulness of porosity-based shallow water models for large scale oodplain simulations.
Floodplains with urban areas have significant effects on inundation flows. Large-scale modelling of such zones thus requires a special treatment to involve those effects. This paper presents a shallow-water model with porosity to account for the reduction in storage and in the exchange sections due to presence of buildings and other structures on the floodplains. The introduction of the porosity in the shallow-water equations modifies the expressions for the fluxes and source terms. Furthermore, it implies the addition of a specific source term. The equations are solved by means of a finite-volume scheme with a modified HLLC Riemann solver and upwind treatment of the source terms. The possibilities of the proposed approach are demonstrated by an application to a large-scale experiment that was part of the European IMPACT project, which represents the severe flooding of the Italian Toce valley. This demonstrates the key advantage of the method, as it allows an accurate representation of the flow without detailed meshing of the urbanized area.
RÉSUMÉLes zones urbanisées présentes dans les plaines d'inondation des rivières peuvent avoir des conséquences importantes sur l'écoulement lors de crues. Une modélisation à grande échelle de ces zones implique donc un traitement adapté afin de reproduire leurs effets. Cet article présente un modèle utilisant des équations de Saint-Venant modifiées, prenant en compte la porosité des zones urbanisées afin de représenter la réduction de capacité de stockage et de passage induite par la présence des bâtiments et autres structures dans la plaine d'inondation. L'introduction de la porosité dans les équations de Saint-Venant implique une modification des expressions des flux et des termes sources. De plus, elle requiert l'adjonction d'un terme source supplémentaire. Ces équations modifiées sont résolues par un schéma de volumes finis avec un solveur de Riemann de type HLLC et un traitement décentré amont des termes sources. Les possibilités de cette nouvelle approche sont démontrées par une application à un cas test expérimental à grande échelle issu du projet européen IMPACT. Ce cas test consiste en une inondation sévère de la vallée italienne du Toce. Cet exemple illustre l'avantage clé de la méthode proposée, à savoir une représentation précise de l'écoulement sans devoir recourir à un maillage détaillé de la zone urbanisée.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.