Phase composition of epitaxial/textured LiNbO3 films on sapphire substrates, grown by pulsed laser deposition, atmospheric pressure metal organic chemical vapor deposition and pulsed injection metal organic chemical vapor deposition was studied by conventional x-ray diffraction techniques. Raman spectroscopy, being highly sensitive to the symmetry of materials, was used as a countercheck in the compositional analysis. The wavenumbers of Raman modes of LiNb3O8 and Li3NbO4 phases were identified from Raman spectra of synthesized powders. Asymmetry of profiles of x-ray diffraction reflections of LiNbO3 films was studied. This asymmetry may have different origins which consequently may result in misleading conclusions about phase composition of textured LiNbO3 films.
Remote epitaxy via graphene has recently attracted significant attention, since it provides the possibility to lift-off the grown epitaxial layer, reuse the substrate, and produce flexible devices. However, extensive research is still necessary to fully understand the III-nitride formation on the van der Waals surface of a two-dimensional material and utilize remote epitaxy to its full potential. In this work, the growth of a GaN epilayer using a GaN/sapphire template covered with monolayer graphene is presented. Metalorganic vapor phase epitaxy is chosen to fabricate both the template and the nitride epilayer on top as a cost-effective approach toward GaN homoepitaxy. One-step and multi-step growth temperature protocols are demonstrated while paying particular attention to the graphene interface. GaN seed formation on graphene is analyzed to identify remote epitaxy. Crystalline quality improvement of the epilayer by adjusting the growth parameters is further discussed to provide useful insights into GaN growth on a GaN/sapphire template via monolayer graphene.
There are several key requirements that a very good LED phosphor should meet, i.e., strong absorption, high quantum efficiency, high colour purity, and high luminescence quenching temperature. The reported Rb2Bi(PO4)(MoO4):Eu3+ phosphors have all these properties. The Rb2Bi(PO4)(MoO4):Eu3+ phosphors emit bright red light if excited with near-UV radiation. The calculated colour coordinates show good stability in the 77–500 K temperature range. Moreover, sample doped with 50% Eu3+ possesses quantum efficiency close to unity. Besides the powder samples, ceramic disks of Rb2Eu(PO4)(MoO4) specimen were also prepared, and the red light sources from these disks in combination with near-UV emitting LED were fabricated. The obtained results indicated that ceramic disks efficiently absorb the emission of 375 and 400 nm LED and could be applied as a red component in phosphor-converted white LEDs.
Sol-gel derived calcium hydroxyapatite (Ca10(PO4)6(OH)2; CHA) thin films were deposited on stainless steel substrates with transverse and longitudinal patterned roughness employing a spin-coating technique. Each layer in the preparation of CHA multilayers was separately annealed at 850 °C in air. Fabricated CHA coatings were placed in simulated body fluid (SBF) for 2, 3, and 4 weeks and investigated after withdrawal. For the evaluation of obtained and treated with SBF coatings, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray diffraction (XRD) analysis, Raman spectroscopy, XPS spectroscopy, scanning electron microscopy (SEM) analysis, and contact angle measurements were used. The tribological properties of the CHA coatings were also investigated in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.