Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in areas such as speech and visual recognition. DL differs from conventional machine learning methods by virtue of its ability to learn the optimal representation from the raw data through consecutive nonlinear transformations, achieving increasingly higher levels of abstraction and complexity. Given its ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies of psychiatric and neurological disorders, which are characterised by subtle and diffuse alterations. Here we introduce the underlying concepts of DL and review studies that have used this approach to classify brain-based disorders. The results of these studies indicate that DL could be a powerful tool in the current search for biomarkers of psychiatric and neurologic disease. We conclude our review by discussing the main promises and challenges of using DL to elucidate brain-based disorders, as well as possible directions for future research.
The rise of machine learning has unlocked new ways of analysing structural neuroimaging data, including brain age prediction. In this state-of-the-art review, we provide an introduction to the methods and potential clinical applications of brain age prediction. Studies on brain age typically involve the creation of a regression machine learning model of age-related neuroanatomical changes in healthy people. This model is then applied to new subjects to predict their brain age. The difference between predicted brain age and chronological age in a given individual is known as ‘brain-age gap’. This value is thought to reflect neuroanatomical abnormalities and may be a marker of overall brain health. It may aid early detection of brain-based disorders and support differential diagnosis, prognosis, and treatment choices. These applications could lead to more timely and more targeted interventions in age-related disorders.
Brain morphology varies across the ageing trajectory and the prediction of a person's age using brain features can aid the detection of abnormalities in the ageing process.Existing studies on such "brain age prediction" vary widely in terms of their methods and type of data, so at present the most accurate and generalisable methodological approach is unclear. Therefore, we used the UK Biobank data set (N = 10,824, age range 47-73) to compare the performance of the machine learning models support vector regression, relevance vector regression and Gaussian process regression on whole-brain region-based or voxel-based structural magnetic resonance imaging data with or without dimensionality reduction through principal component analysis. Performance was assessed in the validation set through cross-validation as well as an independent test set. The models achieved mean absolute errors between 3.7 and 4.7 years, with those trained on voxel-level data with principal component analysis performing best. Overall, we observed little difference in performance between models trained on the same data type, indicating that the type of input data had greater impact on performance than model choice. All code is provided online in the hope that this will aid future research.
Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting‐state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low‐frequency fluctuation, regional homogeneity and two connectome‐wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10‐fold cross‐validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia.
Background: Whereas the role of neoadjuvant radiotherapy in rectal cancer is well-established, the ability to discriminate between radioresistant and radiosensitive tumors before starting treatment is still a crucial unmet need. Here we aimed to develop an in vivo test to directly challenge living cancer cells to radiotherapy, using zebrafish xenografts. Methods: We generated zebrafish xenografts using colorectal cancer cell lines and patient biopsies without in vitro passaging, and developed a fast radiotherapy protocol consisting of a single dose of 25 Gy. As readouts of the impact of radiotherapy we analyzed proliferation, apoptosis, tumor size and DNA damage. Findings: By directly comparing isogenic cells that only differ in the KRAS G13D allele, we show that it is possible to distinguish radiosensitive from radioresistant tumors in zebrafish xenografts, even in polyclonal tumors, in just 4 days. Most importantly, we performed proof-of-concept experiments using primary rectum biopsies, where clinical response to neoadjuvant chemoradiotherapy correlates with induction of apoptosis in their matching zebrafish Patient-Derived Xenografts-Avatars. Interpretation: Our work opens the possibility to predict tumor responses to radiotherapy using the zebrafish Avatar model, sparing valuable therapeutic time and unnecessary toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.