SummaryPathogenicity islands (PAIs) have been identified in several bacterial species. A PAI called high-pathogenicity island (HPI) and carrying genes involved in iron acquisition (yersiniabactin system) has been previously identified in Yersinia enterocolitica and Yersinia pestis. In this study, the HPI of the third species of Yersinia pathogenic for humans, Y. pseudotuberculosis, has been characterized. We demonstrate that the HPI of strain IP32637 has a physical and genetic map identical to that of Y. pestis. A gene homologous to the bacteriophage P4 integrase gene is located downstream of the asn tRNA locus that borders the HPI of strain IP32637. This int gene is at the same position on the HPI of all three pathogenic Yersinia species. However, in contrast to Y. pestis 6/69, the HPI of Y. pseudotuberculosis IP32637 is not invariably adjacent to the pigmentation segment and can be inserted at a distance Ն 190 kb from this segment. Also, in contrast to Y. pestis and Y. enterocolitica, the HPI of Y. pseudotuberculosis IP32637 can precisely excise from the chromosome, and, strikingly, it can be found inserted in any of the three asn tRNA loci present on the chromosome of this species, one of which is adjacent to the pigmentation segment. The pigmentation segment, which is present in Y. pestis but not in Y. enterocolitica, is also present and well conserved in all strains of Y. pseudotuberculosis studied. In contrast, the presence and size of the HPIs vary depending on the serotype of the strain: an entire HPI is found in strains of serotypes I only, a HPI with a 9 kb truncation in its left-hand part that carries the IS100 sequence and the psn and ybtE genes characterizes the strains of serotype III, and no HPI is found in strains of serotypes II, IV and V.
SummaryThe Yersinia high-pathogenicity island (HPI) encodes the siderophore yersiniabactin-mediated iron uptake system. The HPI of Yersinia pseudotuberculosis I has previously been shown to be able to excise precisely from the bacterial chromosome by recombination between the attB -R and attB -L sites flanking the island. However, the nature of the Y. pseudotuberculosis HPI excision machinery remained unknown. We show here that, upon excision, the HPI forms an episomal circular molecule. The island thus has the ability to excise from the chromosome, circularize and reintegrate itself, either in the same location or in another asn tRNA copy. We also demonstrate that the HPI-encoded bacteriophage P4-like integrase (Int) plays a critical role in HPI excision and that, like phage integrases, it acts as a site-specific recombinase that catalyses both excision and integration reactions. However, Int alone cannot efficiently promote recombination between the attB -R and attB -L sites, and we demonstrate that a newly identified HPIborne factor, designated Hef (for HPI excision factor) is also required for this activity. Hef belongs to a family of recombination directionality factors. Like the other members of this family, Hef probably plays an architectural rather than a catalytic role and promotes HPI excision from the chromosome by driving the function of Int towards an excisionase activity. The fact that the HPI, and probably several other pathogenicity islands, carry a machinery of integration/excision highly similar to those of bacteriophages argues for a phage-mediated acquisition and transfer of these elements.
A pathogenicity island termed high-pathogenicity island (HPI) is present in pathogenic Yersinia. This 35 to 45 kb island carries genes involved in synthesis, regulation and transport of the siderophore yersiniabactin. Recently, the HPI was also detected in various strains of Escherichia coli. In this study, the distribution of the HPI in the family Enterobacteriaceae was investigated. Among the 67 isolates pertaining to 18 genera and 52 species tested, nine (13.4%) harbored the island. These isolates were three E. coli, one Citrobacter diversus and five Klebsiella of various species (Klebsiella pneumoniae, Klebsiella rhinoscleromatis, Klebsiella ozaenae, Klebsiella planticola, and Klebsiella oxytoca). As in Yersinia sp., all nine isolates synthesized the HPI-encoded iron-repressible proteins HMWP1 and HMWP2. In the K. oxytoca strain, the right-end portion of the HPI was deleted, whereas the entire core region of the island was present in the eight other enterobacteria strains analyzed. In most of these isolates, the HPI was bordered by an asn tRNA locus, as in Yersinia sp. This report thus demonstrates the spread of the HPI among various members of the family Enterobacteriaceae. ß
A pathogenicity island termed high-pathogenicity island (HPI) is present in pathogenic Yersinia. This 35 to 45 kb island carries genes involved in synthesis, regulation and transport of the siderophore yersiniabactin. Recently, the HPI was also detected in various strains of Escherichia coli. In this study, the distribution of the HPI in the family Enterobacteriaceae was investigated. Among the 67 isolates pertaining to 18 genera and 52 species tested, nine (13.4%) harbored the island. These isolates were three E. coli, one Citrobacter diversus and five Klebsiella of various species (Klebsiella pneumoniae, Klebsiella rhinoscleromatis, Klebsiella ozaenae, Klebsiella planticola, and Klebsiella oxytoca). As in Yersinia sp., all nine isolates synthesized the HPI-encoded iron-repressible proteins HMWP1 and HMWP2. In the K. oxytoca strain, the right-end portion of the HPI was deleted, whereas the entire core region of the island was present in the eight other enterobacteria strains analyzed. In most of these isolates, the HPI was bordered by an asn tRNA locus, as in Yersinia sp. This report thus demonstrates the spread of the HPI among various members of the family Enterobacteriaceae.
Highly pathogenic strains of Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica are characterized by the possession of a pathogenicity island designated the high-pathogenicity island (HPI). This 35- to 45-kb island carries an iron uptake system named the yersiniabactin locus. While the HPIs ofY. pestis and Y. pseudotuberculosis are subject to high-frequency spontaneous deletion from the chromosome, we were initially unable to obtain HPI-deleted Y. enterocolitica 1B isolates. In the present study, using a positive selection strategy, we identified three HPI-deleted mutants of Y. enterocoliticastrain Ye8081. In these three independent clones, the chromosomal deletion was not limited to the HPI but encompassed a larger DNA fragment of approximately 140 kb. Loss of this fragment, which occurred at a frequency of approximately 5 × 10−7, resulted in the disappearance of several phenotypic traits, such as growth in a minimal medium, hydrolysis ofo-nitrophenyl-β-d-thiogalactopyranoside, Tween esterase activity, and motility, and in a decreased virulence for mice. However, no precise excision of the Ye8081 HPI was observed. To gain more insight into the molecular basis for this phenomenon, the putative machinery of HPI excision in Y. enterocolitica was analyzed and compared to that in Y. pseudotuberculosis. We show that the probable reasons for failure of precise excision of the HPI of Y. enterocolitica Ye8081 are (i) the interruption of the P4-like integrase gene located close to its right-hand boundary by a premature stop codon and (ii) lack of conservation of 17-bpatt-like sequences at both extremities of the HPI. These mutations may represent a process of HPI stabilization in the speciesY. enterocolitica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.