Various experimental models are used to study brain development and degeneration. They range from whole animal models, which preserve anatomical structures but strongly limit investigations at the cellular level, to dissociated cell culture systems that allow detailed observation of cell phenotypes but lack the highly ordered physiological neuron connection architecture. We describe here a platform comprising independent cell culture chambers separated by an array of "axonal diodes". This array involves asymmetric micro-channels, imposing unidirectional axon connectivity with 97% selectivity. It allows the construction of complex, oriented neuronal networks not feasible with earlier platforms. Different neuronal subtypes could be co-cultivated for weeks, and sequential seeding of different cell populations reproduced physiological network development. To illustrate possible applications, we created and characterized a cortico-striatal oriented network. Functional synaptic connections were established. The activation of striatal differentiation by cortical axons, and the synchronization of neural activity were demonstrated. Each neuronal population and subcompartment could be chemically addressed individually. The directionality of neural pathways being a key feature of the nervous system organization, the axon diode concept brings in a paradigmatic change in neuronal culture platforms, with potential applications for studying neuronal development, synaptic transmission and neurodegenerative disorder such as Alzheimer and Parkinson diseases at the sub-cellular, cellular and network levels.
To investigate the role of insulin signaling on postnatal cardiac development, physiology, and cardiac metabolism, we generated mice with a cardiomyocyte-selective insulin receptor knockout (CIRKO) using cre/loxP recombination. Hearts of CIRKO mice were reduced in size by 20–30% due to reduced cardiomyocyte size and had persistent expression of the fetal β-myosin heavy chain isoform. In CIRKO hearts, glucose transporter 1 (GLUT1) expression was reduced by about 50%, but there was a twofold increase in GLUT4 expression as well as increased rates of cardiac glucose uptake in vivo and increased glycolysis in isolated working hearts. Fatty acid oxidation rates were diminished as a result of reduced expression of enzymes that catalyze mitochondrial β-oxidation. Although basal rates of glucose oxidation were reduced, insulin unexpectedly stimulated glucose oxidation and glycogenolysis in CIRKO hearts. Cardiac performance in vivo and in isolated hearts was mildly impaired. Thus, insulin signaling plays an important developmental role in regulating postnatal cardiac size, myosin isoform expression, and the switching of cardiac substrate utilization from glucose to fatty acids. Insulin may also modulate cardiac myocyte metabolism through paracrine mechanisms by activating insulin receptors in other cell types within the heart
Dysregulation of cholesterol synthesis is implicated in Huntington’s disease. Boussicault et al. show that expression of CYP46A1, the rate-limiting enzyme in cholesterol degradation, is reduced in patients and a mouse model. Restoration of CYP46A1 re-establishes normal cholesterol levels and is neuroprotective, suggesting that targeting cholesterol degradation may have therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.