Parameters important to the self-assembly of 3-(aminopropyl)triethoxysilane (APTES) on chemically grown silicon oxide (SiO 2) to form an aminopropyl silane (APS) film have been investigated using in situ infrared (IR) absorption spectroscopy. Preannealing to approximately 70 degrees C produces significant improvements in the quality of the film: the APS film is denser, and the Si-O-Si bonds between the molecules and the SiO 2 surface are more structured and ordered with only a limited number of remaining unreacted ethoxy groups. In contrast, post-annealing the functionalized SiO 2 samples after room temperature reaction with APTES (i.e., ex situ annealing) does not lead to any spectral change, suggesting that post-annealing has no strong effect on the horizontal polymerization as suggested earlier. Both IR and ellipsometry data show that the higher the solution temperature, the denser and thinner the APS layer is for a given immersion time. Finally, the APS layer obtained by preannealing the solution at 70 degrees C exhibits a better stability in deionized water than the APS layer prepared at room temperature.
Using wet-chemical self-assembly, we demonstrate that standard surface reactions can be markedly altered. Although HF etching of Si surfaces is known to produce H-terminated surfaces, we show that up to approximately 30% of a monolayer of stable Si-F bonds can be formed on atomically smooth Si(111) surfaces on HF reaction, when chemically isolated Si atoms are the target of the reaction. Similarly, approximately 30% Si-OH termination can be achieved by immersion of the partially covered F-Si(111) surface in water without oxidation of the underlying Si substrate. Such reactions are possible when H-terminated (111)-oriented Si surfaces are initially uniformly patterned with methoxy groups. These findings are contrary to the knowledge built over the past twenty years and highlight the importance of steric interactions at surfaces and the possibility to stabilize products at surfaces that cannot be obtained on chemically homogeneous surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.