Elderly individuals are the most susceptible to an aggressive form of coronavirus disease (COVID-19), caused by SARS-CoV-2. The remodeling of immune response that is observed among the elderly could explain, at least in part, the age gradient in lethality of COVID-19. In this review, we will discuss the phenomenon of immunosenescence, which entails changes that occur in both innate and adaptive immunity with aging. Furthermore, we will discuss inflamm-aging, a low-grade inflammatory state triggered by continuous antigenic stimulation, which may ultimately increase all-cause mortality. In general, the elderly are less capable of responding to neo-antigens, because of lower naïve T cell frequency. Furthermore, they have an expansion of memory T cells with a shrinkage of the T cell diversity repertoire. When infected by SARS-CoV-2, young people present with a milder disease as they frequently clear the virus through an efficient adaptive immune response. Indeed, antibody-secreting cells and follicular helper T cells are thought to be effectively activated in young patients that present a favorable prognosis. In contrast, the elderly are more prone to an uncontrolled activation of innate immune response that leads to cytokine release syndrome and tissue damage. The failure to trigger an effective adaptive immune response in combination with a higher pro-inflammatory tonus may explain why the elderly do not appropriately control viral replication and the potential clinical consequences triggered by a cytokine storm, endothelial injury, and disseminated organ injury. Enhancing the efficacy of the adaptive immune response may be an important issue both for infection resolution as well as for the appropriate generation of immunity upon vaccination, while inhibiting inflamm-aging will likely emerge as a potential complementary therapeutic approach in the management of patients with severe COVID-19.
Rare diseases comprise a diverse group of conditions, most of which involve genetic causes. We describe the variable spectrum of findings and clinical impacts of exome sequencing (ES) in a cohort of 500 patients with rare diseases. In total, 164 primary findings were reported in 158 patients, representing an overall diagnostic yield of 31.6%. Most of the findings (61.6%) corresponded to autosomal dominant conditions,
BackgroundStudies have suggested that soluble factors in plasma from patients with active (aBD) and inactive (iBD) Behçet’s disease (BD) stimulate neutrophil function. Soluble CD40 ligand (sCD40L) is an important mediator of inflammation in BD. Its expression and effect on neutrophil oxidative burst and neutrophil extracellular trap (NET) release have not been characterized. In this study, we sought to investigate the role of plasma and the CD40L pathway on NET release and the oxidative burst profile in patients with aBD and iBD.MethodsNeutrophils and peripheral blood mononuclear cells (PBMCs) were obtained from patients with aBD (n = 30), patients with iBD (n = 31), and healthy control subjects (HCs; n = 30). sCD40L plasma concentration was determined in individual samples. A pool of plasma for each group was created. In some experiments, plasma pools were treated with recombinant CD40 (rhCD40-muIg) for sCD40L blockade. NET release and H2O2/O2 − production were determined after stimulation with phorbol 12-myristate 13-acetate, sCD40L, or plasma pool. Flow cytometric analysis was performed to evaluate the expression of (1) CD40, Mac-1, and phosphorylated NF-κB p65 on neutrophils and monocytes and (2) CD40L on activated T cells and platelets. CD40L gene expression in PBMCs was determined by qRT-PCR.ResultssCD40L plasma levels were significantly higher in patients with iBD (median 17,234, range 2346–19,279 pg/ml) and patients with aBD (median 18,289, range 413–19,883 pg/ml) than in HCs (median 47.5, range 33.7–26.7 pg/ml; p < 0.001). NET release was constitutively increased in BD compared with HC. NET release and H2O2/O2 − were higher after stimulation with sCD40L or BD plasma and decreased after sCD40L blockade. Mac-1 expression was constitutively increased in neutrophils of patients with aBD (88.7 ± 13.2% of cells) and patients with iBD (89.2 ± 20.1% of cells) compared with HC (27.1 ± 18.8% of cells; p < 0.01). CD40 expression on phagocytes and CD40L expression on platelets were similar in the three groups. PBMCs as well as nonactivated and activated CD4+ T cells from patients with BD showed higher CD40L expression.ConclusionsPlasma from patients with aBD exerts a stimulus on NET release and oxidative burst, probably induced by sCD40L.Electronic supplementary materialThe online version of this article (doi:10.1186/s13075-017-1443-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.