Two classes of rotaxanes are described in which photoinduced processes modulate a large-amplitude motion. In the first type, E-Z-isomerization of a fumaric diamide unit to a maleic diamide leads to a substantial weakening of the hydrogen bonds between the diamide and the macrocyclic ring that surrounds it. As a result, the rate of the pirouetting motion is increased approximately by six orders of magnitude. In the second type, intermolecular photoinduced electron transfer is used to induce a reversible shuttling motion on a time scale of microseconds. Medium effects on the rate of shuttling are presented.
The effect of external friction, caused by medium viscosity, on the photoinduced translational motion in a rotaxane-based molecular shuttle 7 is investigated. The shuttle is successfully operated in solutions of poly(methacrylonitrile) (PMAN) of different molecular weights in MeCN and PrCN. The viscosity of the medium is tuned by changing the PMAN concentration. The rheological behavior of the polymer solution gives insight into the structure of the polymer solution on the microscopic scale. In PrCN, the entanglement regime is reached at lower concentration than in MeCN. This is also reflected by the effect on the shuttling: in the PrCN/PMAN system, a larger viscosity effect is observed compared to MeCN/PMAN. The shuttle is found to be slowed down in the polymer solutions but is still active at high viscosities. The observed retardation effect on the kinetics of shuttling in MeCN/PMAN and PrCN/PMAN can be correlated to the PMAN concentration through the hydrodynamic scaling model. The Stokes-Einstein relationship proves inadequate to correlate the shuttling rates to macroscopic viscosity, but the dependence of the shuttling rate on the bulk viscosity fits well to a commonly observed power-law relationship. The viscosity effect on the shuttling is found to be weak in all case
Two classes of rotaxanes are described in which photoinduced processes modulate a large-amplitude motion. In the first type, E-Z-isomerization of a fumaric diamide unit to a maleic diamide leads to a substantial weakening of the hydrogen bonds between the diamide and the macrocyclic ring that surrounds it. As a result, the rate of the pirouetting motion is increased approximately by six orders of magnitude. In the second type, intermolecular photoinduced electron transfer is used to induce a reversible shuttling motion on a time scale of microseconds. Medium effects on the rate of shuttling are presented.
Hydrogen bonding in a [2]rotaxane is shown to stabilise the phenolate anion of a coumaric amide chromophore by almost 3 pKa units; however, the effect on the UV spectral shift in the anion is small and, significantly given the photochemistry of PYP, despite the hydrogen bonding olefin photoisomerisation in the anionic rotaxane remains heavily suppressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.