The ionization of the lower Martian atmosphere and the presence of charged species are fundamental in the understanding of atmospheric electricity phenomena, such as electric discharges, large‐scale electric currents, and Schumann resonances. The present photochemical model of the lower ionosphere of Mars (0–70 km) is developed to compute the concentration of the most abundant charged species (cluster ions, electrons, and charged aerosols) and electric conductivity, at the landing site and epoch of the ExoMars 2016 mission. The main sources of ionization are galactic cosmic rays (during daytime as well as nighttime) and photoionization of aerosols due to solar UV radiation during daytime. Ion and electron attachment to aerosols is another major source of aerosol charging. The steady state concentration of charged species is computed by solving their respective balance equations (also known as continuity equations), which include the source and sink terms of their photochemical reactions. Since the amount of suspended dust can vary considerably and it has an important effect on atmospheric properties, several dust scenarios, in addition to the day‐night variations, are considered to characterize the variability of the concentration of charged species. It has been found that during daytime, aerosols tend to become positively charged due to electron photoemission and, during nighttime, tend to charge negatively due to electron attachment. The most dominant day‐night variability in ion and electron concentration occurs when the amount of suspended dust is the largest. The electric conductivity has been found to vary in the 10−13–10−7 S/m range, depending on the altitude, dust scenario, and local time.
New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp up models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge detailed studies have revealed how filament characteristic are responsible for determining the near and far SOL density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during ELMs and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n>1 has been shown to be important for plasma performance.
Twisted magnetic flux ropes are ubiquitous in laboratory and astrophysical plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start-up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak (MAST). Two currentcarrying plasma rings or flux ropes approach each due to mutual attraction, forming a current sheet and subsequently merge through magnetic reconnection into a single plasma torus, with substantial plasma heating. Two dimensional resistive and Hall MHD simulations of this process are reported. A model of the merging based on helicityconserving relaxation to a minimum energy state is also presented, extending previous work to tight-aspect-ratio toroidal geometry. This model leads to a prediction of the final state of the merging, in good agreement with simulations and experiment, as well as the average temperature rise. A relaxation model of reconnection between two or more flux ropes in the solar corona is also described, allowing for different senses of twist, and the implications for heating of the solar corona are discussed.
The Permittivity Wave and Altimetry system on board the Huygens probe observed an ionospheric hidden layer at a much lower altitude than the main ionosphere during its descent through the atmosphere of Titan, the largest satellite of Saturn. Previous studies predicted a similar ionospheric layer.However, neither previous nor post-Huygens theoretical models have been able to reproduce the measurements of the electrical conductivity and charge densities reported by the Mutual Impedance (MI) and Relaxation Probe (RP) sensors. The measurements were made from an altitude of 140 km down to the ground and show a maximum of charge densities of ≈ 2×10 9 m −3 positive ions and ≈ 450 × 10 6 m −3 electrons at approximately 65 km. Such a large difference between positive and negative charge densities has not yet been understood. Here, by making use of electron and ion capture processes in to aerosols, we are able to model both electron and positive ion number densities and to reconcile experimental data and model results.
Schumann resonances are standing waves that oscillate in the electromagnetic cavity formed between the conducting lower ionosphere and the surface of the planet. They have been measured in situ only on Earth and Titan, although they are believed to exist on other planets like Mars. We report numerical simulations of the Martian electromagnetic cavity, accounting for the day‐night asymmetry and different dust scenarios. It has been found that the resonances are more energetic on the nightside, the first resonance is expected to be 9–14 Hz depending on the dust activity and to have low quality factors (Q≃2). This work serves as an input for the upcoming Exomars surface platform (launch 2020), who will attempt to measure them for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.