Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Lightning was detected by Voyager 2 at Uranus and Neptune, and weaker electrical processes also occur throughout planetary atmospheres from galactic cosmic ray (GCR) ionisation. Lightning is an indicator of convection, whereas electrical processes away from storms modulate cloud formation and chemistry, particularly if there is little insolation to drive other mechanisms. The ice giants appear to be unique in the Solar System in that they are distant enough from the Sun for GCR-related mechanisms to be significant for clouds and climate, yet also convective enough for lightning to occur. This paper reviews observations (both from Voyager 2 and Earth), data analysis and modelling, and considers options for future missions. Radio, energetic particle and magnetic instruments are recommended for future orbiters, and Huygens-like atmospheric electricity sensors for in situ observations. Uranian lightning is also expected to be detectable from terrestrial radio telescopes.
Lightning was detected by Voyager 2 at Uranus and Neptune, and weaker electrical processes also occur throughout planetary atmospheres from galactic cosmic ray (GCR) ionisation. Lightning is an indicator of convection, whereas electrical processes away from storms modulate cloud formation and chemistry, particularly if there is little insolation to drive other mechanisms. The ice giants appear to be unique in the Solar System in that they are distant enough from the Sun for GCR-related mechanisms to be significant for clouds and climate, yet also convective enough for lightning to occur. This paper reviews observations (both from Voyager 2 and Earth), data analysis and modelling, and considers options for future missions. Radio, energetic particle and magnetic instruments are recommended for future orbiters, and Huygens-like atmospheric electricity sensors for in situ observations. Uranian lightning is also expected to be detectable from terrestrial radio telescopes.
Context. The atmosphere of Mars is characterised by a complex seasonal cycle of cloud formation related to the condensation of CO2 and H2O, and to the lifting of surface dust. Several decades of spacecraft observations have provided an impressive amount of data to constrain cloud properties. However, observations of a given cloud obtained from Mars orbit are typically limited in time sampling and spatial coverage. As a complement to this existing dataset, Earth-based telescopic observations have the potential to provide a global and dynamic view of some large-scale Mars clouds. Aims. On 17 November 2020, Mars and Earth were close to opposition. We took advantage of this configuration to attempt observing large-scale high-altitude atmospheric phenomena from Earth with a high time sampling, over several hours. Methods. Ten amateur astronomers were coordinated along with professional astronomers to observe Mars. Results. We observed the occurrence of a large-scale high-altitude cloud system, extending over thousands of kilometres from the equator to 50°S. Over 3 h, it emerged from the night side at 92−16+30 km and dissipated on the dayside. It occurred at a solar longitude of 316° (southern summer) concomitantly to a regional dust storm and west of the magnetic anomaly. Despite its high altitude, it was composed of relatively large particles (effective radius in the 1–2 µm range). While dust appears an unlikely candidate, possible composition by CO2 or H2O are both conceivable, although the whole properties of the cloud makes it atypical compared to previously reported clouds. We discuss the possible connections with the dust storm, along with the hypothetical role of nucleation from cosmic particle precipitation. Conclusions. We continuously followed a high-altitude huge cloud system on Mars from Earth, emerging from the Martian night, from its appearance at the terminator until its complete dissipation. It is either a large-grained water ice cloud system or an extended mid-summer dawn CO2 cloud system.
<p>Many studies were carried out recently regarding the exploration of Ice Giants, in the context of the next NASA decadal survey in planetary sciences and astrobiology, of the next planning cycle in ESA's Science Programme, and of a possible NASA-ESA collaboration. A mission to an Ice Giant could include an atmospheric probe, to operate in the 1-10 bars pressure range. Its payload could comprise sensor(s) devoted to the measurement of electrical properties, plasma densities and conductivities.</p> <p>In order to check the performances of such instruments, it is necessary to develop models of the electron and ion densities profiles, with and without aerosols, from which the electrical conductivities can be derived.</p> <p>A model was developed based on studies performed at Mars and Titan [1-2], which computes the atmospheric positive and negative electrical conductivities between 0.1 and 15 bars in the atmosphere of Neptune and Uranus. In this altitude range, galactic cosmic rays ionize the atmospheric constituents, which react with atmospheric neutrals and aerosols, leading to the formation of ions heavier than the ones produced by cosmic rays. The densities of positive ions, electrons and charged aerosols are obtained by solving their corresponding continuity equations. It has been found that aerosol particles tend to be negatively charged due to the attachment of electrons, as a more efficient process than the attachment of positive ions. Therefore, the electrical conductivity due to negative charges is strongly reduced compared to the one expected when aerosols are not present. However, the electrical conductivity due to positive ions does not change so dramatically. The experimental determination of both components of the electrical conductivity can be useful to understand the properties of aerosols, plasma and electric currents in the atmospheres of Ice Giants.</p> <p>Figure 1 and 2 shows some the first results of the number density and electrical conductivities in the atmospheres of Uranus and Neptune. They were calculated for a cosmic rays flux valid for a heliocentric potential of 100 MV, neglecting the planetary internal magnetic field, a mean ion mass of 100 amu and the aerosol particle distribution reported by Toledo et al. [3-4], which is extended down to the pressure range here considered.</p> <p><img src="data:image/jpeg;base64, /9j/4RtkRXhpZgAATU0AKgAAAAgADAEAAAMAAAABBFIAAAEBAAMAAAABAwAAAAECAAMAAAADAAAAngEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEVAAMAAAABAAMAAAEaAAUAAAABAAAApAEbAAUAAAABAAAArAEoAAMAAAABAAIAAAExAAIAAAAfAAAAtAEyAAIAAAAUAAAA04dpAAQAAAABAAAA6AAAASAACAAIAAgADqYAAAAnEAAOpgAAACcQQWRvYmUgUGhvdG9zaG9wIDIxLjIgKFdpbmRvd3MpADIwMjA6MDc6MDkgMDg6Mjk6NTAAAAAEkAAABwAAAAQwMjMxoAEAAwAAAAH//wAAoAIABAAAAAEAAAH0oAMABAAAAAEAAAFbAAAAAAAAAAYBAwADAAAAAQAGAAABGgAFAAAAAQAAAW4BGwAFAAAAAQAAAXYBKAADAAAAAQACAAACAQAEAAAAAQAAAX4CAgAEAAAAAQAAGd4AAAAAAAAASAAAAAEAAABIAAAAAf/Y/+0ADEFkb2JlX0NNAAL/7gAOQWRvYmUAZIAAAAAB/9sAhAAMCAgICQgMCQkMEQsKCxEVDwwMDxUYExMVExMYEQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMAQ0LCw0ODRAODhAUDg4OFBQODg4OFBEMDAwMDBERDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCABvAKADASIAAhEBAxEB/90ABAAK/8QBPwAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcICQoLAQABBQEBAQEBAQAAAAAAAAABAAIDBAUGBwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCESMQVBUWETInGBMgYUkaGxQiMkFVLBYjM0coLRQwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl8rOEw9N14/NGJ5SkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQEAwQFBgcHBgU1AQACEQMhMRIEQVFhcSITBTKBkRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKDByY1wtJEk1SjF2RFVTZ0ZeLys4TD03Xj80aUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dnd4eXp7fH/9oADAMBAAIRAxEAPwD1VUHYVjLn5L8mywEj0WSQK97iLPonbZ7X7a/UZ+jV9CyJ9LT95v8A1TUlIcdrrGOLrHyLHtGvZrnMaPwT5FT20WOrssD2tcWkGdQPb7Y9yfE+jYPC6z8XF3/flXzun0ZV7n24NWSW1Qyx5AcXAu20fQdsZ7t3q/8AQTYUYDiJFjceqX/crIAyxgXqRuTSG6zrYucKMWuynd+isOU6tzm7d8urONbt936P6SuYrMqykOy2nHt3OBrZb6ggE7Hepsr+mz3/AEfYqvT8RlLsX0MVrGCprrLN21rXODt3pY4/7UOf/O3elR+h/wAJ/glfyam3UWUvY25r2lrqncOB02u+knAg69CuBsA93Kbd9ZZDbOn0/wAp7M123n27A/F3/wBff/g/9JYr2G3KtqDssGi3c4enXb6rdoJax3qGqn6f09uz2IDsGpgfYMBjXbHAvpeG2Rts9tVn6HY93q2NY/1qtnqfziuYrH147A+ttJAM1sO4DU/nwzc79/8Alomul/UUkimr1kZVPTrH4dz68kljKnmHQ59ldU7LGuY76aPg3C+uu5ji6u6mu1oJJ+nLvzg1yrdaya2mih59jHfbMg92U4hGT6n9rJbjVbf5dn+jRuk02UYmNTb/ADlWLSx8Db7mtLXe2Gbf8xGvT42uI9A8y27WGyp9YcWF7S0Pbo4SI3N/lNVXHw/s7hWbbLHWb7LLHOMucCxjP6uyv2ez2K6hO/pDP6j/AMtaatV6I3fTfxxuKXoiT7n/AOcVPWeeyfWSkpy+vWX4vTLHYtj2ZNz6seh24na++yvGbY1p3bvS9X1fofmLR9Fuvufz+8Vl9RH2vrnT8ESWYpdn3QBEtDsfEa6f37LLrP8ArC1x8VJMAQgOpuZ7+r0xj/zOL/DR3RikR9J/+cVW6hYMLpuRl7nuNFL7GguOpa0ua3+05XRMcrL6x+sOw+mjX7Ta2y4aaVUFuQ+Z/ftZTT/1xRSNA19GXFESyRB+W+KX9yPqn/zW0ym2nDZ6tr33sraH2T9J4A3vjRvud/JVtCyJ9B+vZFRWE2Se7//Q9VQsn+a4n3N0/tNVTrOXdjV44otbTZfc2ve8S2CHF+4w7Z7W+z/hFbyv5k/1m/8AVNSUjxhFmS3wu/Kyt/8A35Stxca12+2lljuNzmhxgdvco1+3Mvb+82uz5nfWf/PTUeEyIBjRF6y/6THAAxogEcUt/wC/JzW9I6Xksa6/FrsdU57GuLQDDXv/AHdn9b/po1HR+l47i6nFYwua6t2kyxx3PY7d+Y5zUWnS29uv84HCR2c1nGn725GMASdAEY1wgdvT/i+lMAOARrb0/wCL6UT8LDe1zXUVkPBa72jVplrm/wCa96ys3p/QcNtbBgNuyLSfs+NWJfYR9M6u2NqZv/S3Xfoav+2kTI6w+/HfbgltGI2S7qmRAo2D3Psxa9zbcv8A4Kz9Dh2fz9eRf/NXBxMS/Je843rY2Pc0ev1G7+mZME+ymf6Fjfzn+Bp2ev8AqONi/wA+pIwreo+H8WSMYxGwA7BHh4LrbDg6P2ms9SurE1NZT7sTouP6v0qa936f2fzPr+r6V/UP0e83+kO0/Mb+V6jjYuPiUMx8asVUsnaxo01O5zv5T3vO+x/+EenZ/SH/ANRv5bEJG1SNpkJ/9IZ/Uf8AlrVKLv2657xc3HbQAwhzjQ55JL3WN+iyxjPof4P/AK76atC2uzKDa3Bxra9tgBmCfSftd/ZcghN37IeRkU41FmRcQ2qpu55gkwP3Wj3Od+61E7rFy32dU6iMKpxbj4rg65wkhzxyZaWtb6G708f9J/Tt+R/3k/pn44cR10iNZH+qopuh0XOOR1HJZsvzXztJkCtntqY2PZ7G/o/Ub/P+n6/561B8lGutlTG11tDK2ANYxohrWgQ1rWt+i1qkhOXFIn7PIfKoMX2V11ussc1jGAue92gAGrnOcf3VndLY/Jybup2tLS8elQ10gtrbrtcz9/f9P/R3evX/ADahl2WdQzfsFDttWO5r7ngE+9vv2z9Fvo+z0/d+kyv+Bwsqm7TqrrqqbXW3YxgAa0cABR7nwH5sx/Vwr9PIP8XH/wChrZEeg/jhGQcj+jv+H+vdGTmF/9H0XrT3MxqSHhm7Iqa4Q0lzXPDH1N9VtjP0jD/mJ34Njbn5FuQ+0EgVVnQMD3e/6P8AOc+zeo9Za6xmJU0Ph2VUXOYxzw0MPqfpNjX7GO2en6jv0bPz1cyJ9LT95v8A1TUlI7AG5tLu1jHsPxG21n/RbajwEDM0FVv+jtZH9s+gf+jcj6psfmkPES+3/wBFWR0lMeIl9CP/AEFCABmOGvvraR4e1zwf+rasTqWS/PuuaQ8dKwneje1pD25d1nptqxvTq/SXU1+p6dtHrUU323ejk/o6smhH63mu9X7JiltmQ5npPrMx+nIZTWf6+x1l+z9JRgV5F/8AoUXBwqacijCon7P0uvmAA7ItDt737f8ADMpc+2z/AMPqTENJSOwJr/uv+lwf+w18fTYI9ROl9Iz9X/O4lv2XkHHflXOY7qFdbziCyX0UuGtDjU3Y2x7HNrdZZs/0n2T0GLRxRccan7S5r7yxvrOYCGF+39I6trvc1m/6KldPpP8A6rkqvoV/1R+RAkn+CmcCVBgjIcfFjfyvRNUNs/aHf1G/legpoXU0W9eLLKw71MFzLCYILDY39H+83d79376tU4uPjPrqoYGMDbCBzqXVl2rpcoNxLv2u/NeGGr0BTU4E7wd3qWNdXt2bX+33+p+Z9BWHR9oZ/Uf+WtJSPqGUzCw78twB9GsvDeNzh9Bn9t/sWdidLaz6vW0ZO51uXQ52U6YeXWNJtbvYXbPpv/m7P+E9RS68DlWYXTGgubk2iy8AkfoaSHv9w9zf0j6nf2FpZEGi3+o78hUh9OID988R/ux9Mf8Au0dWbGBrGtku2gDc7UmBy4oHUMk4mI+2tofeYZRWdA6159Ohh/k+o5u935jFYbEf6+Czb7nXdQsexjrqulVl/ps+k/JsYXNqZu2/pKsR39T9er/0aiO3noyYwCbIuMBxS/73/Dl6G107BZg4jKA42v1dba7l9jjuuudzt9Sz3bVYAG3jsswdaukB3Ss4SWgnbUQN20/m5H5m/wB3/F/6RW87KsxKWWVYt2YS4NcyjZuAIP6T9NZS1zPb+8iBWgWykZEyJsk2UuQ0eg/QcIqxz1m26vb+zM6tryG73srAAcQz1n/p97a/z3+31WVs/m1sJIf/0vVULJ/mvH3N/wCqaioWV/Mn4t/6pqSmGc0uw7gAd2xxb8QNzf8ApBDy8p9bGNxmC7Iu1qrLg0bZY2y+zX+Zo9RrrP8Atv8APRcu9lFD7XsdYBADGDc5xcfTZW0fy3u2+/2f6T2LMrnB6YeovazIz31srqMAavLKsPCbZ9P0fXfXud/pfUyP5CaATkERvMV9h/8AQ1RAjPjlqCNv3jj/AO5/W+phisobm33vdZbT0ljx69jg42XWbrcy7YwNbvor/Vq3VtZ6fqZOLWz061pdOpsqxWm5pbfcXXXt3btr7CbH1h8u3Np3eiz+QxZ1GI1tWN03+eDrN+Q98S9uOWutvLf0jHWZXUdlljPZ/P3raUpI4QB8pPp/uR+WX+H862JMrkf0iT9rC3+Zf/Vd+RKr+bZ/VH5Erf5p/wDVclX/ADbP6o/ImLmfcKDP6Q7+o38r1Pw+aGz+kO/qN/LYkpMhP/pDP6j/AMtalbaymp9thhlbS5xgmABudo1UXdUx3MszKw99OPXaQ6CBZsFT3ejP0/d+i/41EAk0Oqmtibczr+VlHa5mG0UVH84O9297RHt978ml/wDUWrd/NWf1T4eBVD6v0vq6cx9jg+28utssbw4vcTu5d9L6au5TrW41xpr9a0VuNdU7d7tp2V+o72s3u9u9PzH1kDaHoH+AgMMnMbiYTslwL9jRtrbG573bWVUs/wCEutcyqv8AlqHTcN2Hgiq13qZD91mTY2BvusPqXuZ9D/CO20/uVemqtD7M/Kx67qjUMGuu7JpneG5VjP0WP6jRst+yV77n/wAu3CvWqJUQ1N9tB+1ll6YCHWVTl/6jj/3bj048PrP2fqTYc0y/J3AQebG/bX72t/Pbss3/AMtGtqDseohmbdNbyXV2ei8l207rmeri7brfpVez9X/Sf0f6C0gm1j5J3HMmzIkjYrbjfygeHq/75zywN0LclkBzg21+9hI2/pHWb7duydtdPqfpd/8AMW+n+i00HJP6u/njwRkLJ31Wnyp//9P1VZuRimh1udkZFltbASysAnY1zt1sV1/z3t/m/wBHvWkq+YM41t+xOrbYHe71QSC2Dxs/O3bUlNSrbflty8t1THUl7aGB/wCa4+172udtbZsb/rsVX16X2dOpe9vpYlTsu7UfSY37Pj1un2/Stvu/43FW1Uw11NYXF5aAC92pMfnO/rKi7r/TGW2U2PcyypxY5hreSSC5u5gY129ns/nGpR9MuIb8Mo/4/wCkqdykJXXCDED+96kPTbKTa/IssqADW49R3Au/Rud9qduLt3vynPr/APQdaP2jG0/TM/zgsrL63VfWTg5La21sLsgurfva0ljQ+o7fT9Vu/wBrHfzisM6/0ptbB67rDAG41vBdqGOf/Nt/t7Ej0rYAAeUUAUAB0bGT+z8rHtxsh9dlF7HVW1lwhzH/AKOxhg/nNclju6fjU1Y1FlddNLG11Vh4hrWDaxjdfzWNQ/2zi2F1eMHX3lu6pgBaHyxt7IucPTZurf8An/pP+DT3HNzKqn4VraaLm/pHEfpWz+dV9Ove3+V+eklsfaMaR+mZ/nNTUvrfe81uDxsaCWkHvZ+6jpJKUqPU+nPzMb0KbG45kHcWbxo9l30N1bf5yr37leSRBIII3BsKaDMyipra67a3MYW0gM3WFpn02Nsczdt+jt96tRka6s8tD/eg5NN1TC/p9dTb7LGm0uES2f0jvbs3Wbf5SALuvkAnHx2kD3AWOMmR9B2xn8r2ub/1z9wKS4GFdh0enuZZa9xsvuLS02WO/nLXCT/1tn+Cp9On/BqxGR4s+4qmbeubQ70KQ7c/9HvJG0FnpbrYbt9vqu9tT/8ABs/4RMbuvjePs+OTA2OFjiJj3bpa1zvdt/c/wn8hICkykZEk6ktq2847N99lVbJjc47RPh7io05LrnPrrc1z6w3f7XhvunY5jne17XbfzFVu/a9zLKr8THsrdWSwbi8eo0+0PZYKtzbZ3s/0Wz+cRMd/WQ6pt9VAr0FhrJkQDuIY727N38t6SG09l72FhLADoTB/vRkkklP/1PTMvqOHhua3JsFe5jrNx+iGsNbHuc76LffdU1Qv6v0/Ha111uxrrmY+4gwLLGtura7T2t9N+7f9BB6rbU26iu/IxqaLGvF1OSATY32fze9zW+x301n4uWbGmh3VMOy8ODRsY0F01Pa3c0/z219tLt9La2fofs/+lSU6DvrF0Rr2sdmVy6TzoIG73/6P+2pu690dlQtdl1NrO6Hl2h2bPU2/vbPVrWbVmv8AUY+3qGE7HdZs/mSJa0737bjZ6f0P0frfzPr/AKP+c/RJqLC4PrHUsFosa9zRj1sBL3bLDeWvdb636Fj9/wDpt7/+D9FKdR/WulMu9A5Vfq7thYDJBje7d+61jPe9/wCYoft/or2Gclm0ktcDOmrm+8R7Wu2fnrMGbd6lrx1PBBr0b+jkkEe6x3v9T9Hu2O27/wA/1f8ARon2m60VV4/UsA3j6QZWHbnPeG4+1jbHOYxrfS/676fv2JKdAdb6IxvqDKpa17nNLpABewMDw537zGvqTY/XOjWObRRk1kkhlbG95/0Y/db9F/8Ao1lPz7HDezqnT9lYL3llUzHp+o1tfqPdZRtP6W2p/wCj/m/+GrsVZbDW+t/UcUuNlTaramhga5znF1IsPqVvtvrqsY3Z72JKbrfrD0V7N4y64gnmDAJHH9lWMXqODmOc3FvZa5gBcGmSAZH/AFTdqxhkObWK39VwBewuY9+xnAFdY3N9T2Xsurs3/wCD9/8AMrR6PkMuZa05NOTdW/3mhoa1rT/NtaPduZ9L9Ju+n6iSmwOo4Rvdj+q0XNca/TMhxcGi5zWNP85tqdv/AEaGesdNaWB94r31stBsDmAMtFhpc91jW+nv9C3+cVDINtnUNfsDaabpD3k+sAWsblD3s9L1Laz6Vn/BPrQi7qJaP0fSwGNaPVk7AQXOYxn53t/SWM9mxJTq/tjpfunLqGyS6XgRGjuUj1fpbY35VTCYhr3BrtRuaPTftfu1+is5rw54rtPTZa5u+Gn+ZaX0ZMbvax7bKWUs/wAH7P0n+DUHuzHue6pvTMhj3E1s3S47R6VVTPaxj3ue2pnvf7N/9RJTpM630l4rLcuoi0Sz3Afu6Gfov/SM9jvenr6z0q1hfXl1OAa55h4J2tG57tv0lnV3vFddxPTWk3MD3NJA2P3Vu2e3+fs/wX+DSazNqouD/wBmb3QKn6taWuc5j/Ubt/Mx3enW3/Cf4T/hEp0mdY6U9jbG5dRa8hoO8fScHWMY79x+yt/semd1npLN27Mplji143tJDgdjmloO72vWaX9SqZOzpYJsDm7XOGu7Z63u2e+n9Io45uDNj/2W5tYeHamd4FjWudLdrd+QP0nt/wBLsSU6p6v0zYHjJrcC5rGhjtxLn7vTraxm5zrH7H7K1bWdi24tLNudbjfadb3bC0NawOcyl7dwa7Yxvt3v/lrSSU//1fQurWtqtoL3YrWvbY0DJBLi8hvo+nH0a/W9P11QpycgBtdd3TnZFnuoLBqJfX6zv8G39FQ79Gz+ds/63YrvWd3q0bRg7os/px90ez+Y0+j/AKb/AK2s8OyTfW2hvSW3GSXsIJG0as49T9LR6v0WfzXqJKUbMl9JAy+klpZFbhB2mAHPaZ2O3O9383s9n82jb6as/wBXHyenNosePUrc5m7YG0s/RljWO9Rvp3s979mz0UBr621vLa+jvJb+jFbmwHF1bbN+4M3Vsxzve76f83+iU6RX9pqOQekfZztBayNwIEh1O4e5z/1dqSmO7INQP2rpbWuLwLIGo936Njnex7K/X9P/AM+ep6liI/JuZ6Vou6WPzbLYcQLWmy4t9RrttTPRZu32f4VaB/5v+lXu+x+lJ9KfT2zPu9P83duTVt+rrMUNZ9kOMHGJNZZv2fvOn9J6H/gP8hJTRuNjK2NN/S22B5bq0MaWba311bXOtd9C7dZ/wdtH/XGNznU2MbldKDhrU9gA2vb6e1xD32t3Mrfe3/tlaVreh+uXXfZvWBcHbiydxFHqb2n/AAnptw/pe/0/QUGN+rrWw37JG4ka1n3Fznd/+E3pKZ9Nqruw2XXV4732y/dSwhhBJ2u/S+/3M+krldNNZJrY1hdEloAmOOE1Hoeiz7Pt9HaPT9ONm383Zs9u1ESU4uTjvszdmRi4mRjWXHe5+3exmyrY5zXx6ltlzG/2PQQcnCY2hhpxunNrbusvbY1razscDj2BzWuczbjvyP0n5lj/ANxV+q3dLGRe23p+Ha7eQ59uTTW4mI3uY872KuLumVy1vTcGwBwDYy6Q72gNG8vc7fa7/Sfn/wCE/lpToXYpdS3Edj9OZuqcyiqT7btz91VA2s9n8uv0bfUTU47rIurw+mGxoD8dzHTLq3ta9zXtr9npM3u3M+hb+i/4S1vU6Y7Og4eEL25gaHi+oPJ9U77/AE2+/wC0MvbR+gf+kfkWfyFaqp+qzd+04e41/pYew/o9zOZd/M+r6X/gaSmpVj3Oa5oxulursb6kAkeoGF2x7v0f0Gut27/0v+E/0yRxL7Ka3DC6de+surrb7QDSAPswx3RZs+k+rZ9D+orj6PqsXM3nE3QwMl7JjYwUbfd/ofR9L/rSh9n+qbrWBpw/Wn9HtewP3E/mbXb9+7bs2pKa7sPJ9CljsDppeA5jq7CGtaxpnHrra1lrW+nY+71Fax8LpfpW/bsXBrdU6HNr2ua1rgwM9Texmx7nf+i01lP1T9a42HD9U2O9fc+ufUmbfUl387++nbT9VPTftOH6ZDfUh7NsBzHM3+7b/Oemkps2dO6G4Mbbj4xDQGVhzWabiXMY2f3nv9qvrJZT9WRk0lhxPtEV+hDmF+g/V/SG7d9H+b2LWSU//9n/7SMQUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAAADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3ByaW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAAD3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAAAABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwgIGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQgVW50RiNSbHQAAAAAAAAAAAAAAABSc2x0VW50RiNQeGxAWAAAAAAAAAAAAAp2ZWN0b3JEYXRhYm9vbAEAAAAAUGdQc2VudW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAAAAAAAAAAAFRvcCBVbnRGI1JsdAAAAAAAAAAAAAAAAFNjbCBVbnRGI1ByY0BZAAAAAAAAAAAAEGNyb3BXaGVuUHJpbnRpbmdib29sAAAAAA5jcm9wUmVjdEJvdHRvbWxvbmcAAAAAAAAADGNyb3BSZWN0TGVmdGxvbmcAAAAAAAAADWNyb3BSZWN0UmlnaHRsb25nAAAAAAAAAAtjcm9wUmVjdFRvcGxvbmcAAAAAADhCSU0D7QAAAAAAEABgAAAAAQACAGAAAAABAAI4QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AAADhCSU0EDQAAAAAABAAAAB44QklNBBkAAAAAAAQAAAAeOEJJTQPzAAAAAAAJAAAAAAAAAAABADhCSU0nEAAAAAAACgABAAAAAAAAAAI4QklNA/UAAAAAAEgAL2ZmAAEAbGZmAAYAAAAAAAEAL2ZmAAEAoZmaAAYAAAAAAAEAMgAAAAEAWgAAAAYAAAAAAAEANQAAAAEALQAAAAYAAAAAAAE4QklNA/gAAAAAAHAAAP////////////////////////////8D6AAAAAD/////////////////////////////A+gAAAAA/////////////////////////////wPoAAAAAP////////////////////////////8D6AAAOEJJTQQIAAAAAAAQAAAAAQAAAkAAAAJAAAAAADhCSU0EHgAAAAAABAAAAAA4QklNBBoAAAAAA2UAAAAGAAAAAAAAAAAAAAFbAAAB9AAAABgARQBQAFMAQwAyADAAMgAwAC0ANQAyADMALQBGAGkAZwB1AHIAZQBfAEUAUABTAEMAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAfQAAAFbAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAEAAAAAAABudWxsAAAAAgAAAAZib3VuZHNPYmpjAAAAAQAAAAAAAFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbWxvbmcAAAFbAAAAAFJnaHRsb25nAAAB9AAAAAZzbGljZXNWbExzAAAAAU9iamMAAAABAAAAAAAFc2xpY2UAAAASAAAAB3NsaWNlSURsb25nAAAAAAAAAAdncm91cElEbG9uZwAAAAAAAAAGb3JpZ2luZW51bQAAAAxFU2xpY2VPcmlnaW4AAAANYXV0b0dlbmVyYXRlZAAAAABUeXBlZW51bQAAAApFU2xpY2VUeXBlAAAAAEltZyAAAAAGYm91bmRzT2JqYwAAAAEAAAAAAABSY3QxAAAABAAAAABUb3AgbG9uZwAAAAAAAAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAABWwAAAABSZ2h0bG9uZwAAAfQAAAADdXJsVEVYVAAAAAEAAAAAAABudWxsVEVYVAAAAAEAAAAAAABNc2dlVEVYVAAAAAEAAAAAAAZhbHRUYWdURVhUAAAAAQAAAAAADmNlbGxUZXh0SXNIVE1MYm9vbAEAAAAIY2VsbFRleHRURVhUAAAAAQAAAAAACWhvcnpBbGlnbmVudW0AAAAPRVNsaWNlSG9yekFsaWduAAAAB2RlZmF1bHQAAAAJdmVydEFsaWduZW51bQAAAA9FU2xpY2VWZXJ0QWxpZ24AAAAHZGVmYXVsdAAAAAtiZ0NvbG9yVHlwZWVudW0AAAARRVNsaWNlQkdDb2xvclR5cGUAAAAATm9uZQAAAAl0b3BPdXRzZXRsb25nAAAAAAAAAApsZWZ0T3V0c2V0bG9uZwAAAAAAAAAMYm90dG9tT3V0c2V0bG9uZwAAAAAAAAALcmlnaHRPdXRzZXRsb25nAAAAAAA4QklNBCgAAAAAAAwAAAACP/AAAAAAAAA4QklNBBEAAAAAAAEBADhCSU0EFAAAAAAABAAAAAE4QklNBAwAAAAAGfoAAAABAAAAoAAAAG8AAAHgAADQIAAAGd4AGAAB/9j/7QAMQWRvYmVfQ00AAv/uAA5BZG9iZQBkgAAAAAH/2wCEAAwICAgJCAwJCQwRCwoLERUPDAwPFRgTExUTExgRDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwBDQsLDQ4NEA4OEBQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAG8AoAMBIgACEQEDEQH/3QAEAAr/xAE/AAABBQEBAQEBAQAAAAAAAAADAAECBAUGBwgJCgsBAAEFAQEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAQQBAwIEAgUHBggFAwwzAQACEQMEIRIxBUFRYRMicYEyBhSRobFCIyQVUsFiMzRygtFDByWSU/Dh8WNzNRaisoMmRJNUZEXCo3Q2F9JV4mXys4TD03Xj80YnlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3EQACAgECBAQDBAUGBwcGBTUBAAIRAyExEgRBUWFxIhMFMoGRFKGxQiPBUtHwMyRi4XKCkkNTFWNzNPElBhaisoMHJjXC0kSTVKMXZEVVNnRl4vKzhMPTdePzRpSkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2JzdHV2d3h5ent8f/2gAMAwEAAhEDEQA/APVVQdhWMufkvybLASPRZJAr3uIs+idtntftr9Rn6NX0LIn0tP3m/wDVNSUhx2usY4usfIse0a9mucxo/BPkVPbRY6uywPa1xaQZ1A9vtj3J8T6Ng8LrPxcXf9+VfO6fRlXufbg1ZJbVDLHkBxcC7bR9B2xnu3er/wBBNhRgOIkWNx6pf9ysgDLGBepG5NIbrOti5woxa7Kd36Kw5Tq3Obt3y6s41u33fo/pK5isyrKQ7Lace3c4GtlvqCATsd6myv6bPf8AR9iq9PxGUuxfQxWsYKmuss3bWtc4O3eljj/tQ5/87d6VH6H/AAn+CV/JqbdRZS9jbmvaWuqdw4HTa76ScCDr0K4GwD3cpt31lkNs6fT/ACnszXbefbsD8Xf/AF9/+D/0livYbcq2oOywaLdzh6ddvqt2glrHeoaqfp/T27PYgOwamB9gwGNdscC+l4bZG2z21Wfodj3erY1j/Wq2ep/OK5isfXjsD620kAzWw7gNT+fDNzv3/wCWia6X9RSSKavWRlU9Osfh3PrySWMqeYdDn2V1Tssa5jvpo+DcL667mOLq7qa7Wgkn6cu/ODXKt1rJraaKHn2Md9syD3ZTiEZPqf2sluNVt/l2f6NG6TTZRiY1Nv8AOVYtLHwNvua0td7YZt/zEa9Pja4j0DzLbtYbKn1hxYXtLQ9ujhIjc3+U1VcfD+zuFZtssdZvsssc4y5wLGM/q7K/Z7PYrqE7+kM/qP8Ay1pq1Xojd9N/HG4peiJPuf8A5xU9Z57J9ZKSnL69Zfi9Msdi2PZk3Pqx6Hbidr77K8ZtjWndu9L1fV+h+YtH0W6+5/P7xWX1Efa+udPwRJZil2fdAES0Ox8Rrp/fssus/wCsLXHxUkwBCA6m5nv6vTGP/M4v8NHdGKRH0n/5xVbqFgwum5GXue40UvsaC46lrS5rf7TldExysvrH6w7D6aNftNrbLhppVQW5D5n9+1lNP/XFFI0DX0ZcURLJEH5b4pf3I+qf/NbTKbacNnq2vfeytofZP0ngDe+NG+538lW0LIn0H69kVFYTZJ7v/9D1VCyf5rifc3T+01VOs5d2NXjii1tNl9za97xLYIcX7jDtntb7P+EVvK/mT/Wb/wBU1JSPGEWZLfC78rK3/wDflK3FxrXb7aWWO43OaHGB29yjX7cy9v7za7Pmd9Z/89NR4TIgGNEXrL/pMcADGiARxS3/AL8nNb0jpeSxrr8Wux1Tnsa4tAMNe/8Ad2f1v+mjUdH6XjuLqcVjC5rq3aTLHHc9jt35jnNRadLb26/zgcJHZzWcafvbkYwBJ0ARjXCB29P+L6UwA4BGtvT/AIvpRPwsN7XNdRWQ8FrvaNWmWub/AJr3rKzen9Bw21sGA27ItJ+z41Yl9hH0zq7Y2pm/9Ldd+hq/7aRMjrD78d9uCW0YjZLuqZECjYPc+zFr3Nty/wDgrP0OHZ/P15F/81cHExL8l7zjetjY9zR6/Ubv6ZkwT7KZ/oWN/Of4GnZ6/wCo42L/AD6kjCt6j4fxZIxjEbADsEeHgutsODo/aaz1K6sTU1lPuxOi4/q/Spr3fp/Z/M+v6vpX9Q/R7zf6Q7T8xv5XqONi4+JQzHxqxVSydrGjTU7nO/lPe877H/4R6dn9If8A1G/lsQkbVI2mQn/0hn9R/wCWtUou/brnvFzcdtADCHONDnkkvdY36LLGM+h/g/8Arvpq0La7MoNrcHGtr22AGYJ9J+139lyCE3fsh5GRTjUWZFxDaqm7nmCTA/daPc537rUTusXLfZ1TqIwqnFuPiuDrnCSHPHJlpa1vobvTx/0n9O35H/eT+mfjhxHXSI1kf6qim6HRc45HUclmy/NfO0mQK2e2pjY9nsb+j9Rv8/6fr/nrUHyUa62VMbXW0MrYA1jGiGtaBDWta36LWqSE5cUifs8h8qgxfZXXW6yxzWMYC573aAAauc5x/dWd0tj8nJu6na0tLx6VDXSC2tuu1zP39/0/9Hd69f8ANqGXZZ1DN+wUO21Y7mvueAT72+/bP0W+j7PT936TK/4HCyqbtOquuqptdbdjGABrRwAFHufAfmzH9XCv08g/xcf/AKGtkR6D+OEZByP6O/4f690ZOYX/0fRetPczGpIeGbsiprhDSXNc8MfU31W2M/SMP+Ynfg2NufkW5D7QSBVWdAwPd7/o/wA5z7N6j1lrrGYlTQ+HZVRc5jHPDQw+p+k2NfsY7Z6fqO/Rs/PVzIn0tP3m/wDVNSUjsAbm0u7WMew/EbbWf9FtqPAQMzQVW/6O1kf2z6B/6NyPqmx+aQ8RL7f/AEVZHSUx4iX0I/8AQUIAGY4a++tpHh7XPB/6tqxOpZL8+65pDx0rCd6N7WkPbl3Wem2rG9Or9JdTX6np20etRTfbd6OT+jqyaEfrea71fsmKW2ZDmek+szH6chlNZ/r7HWX7P0lGBXkX/wChRcHCppyKMKifs/S6+YADsi0O3vft/wAMylz7bP8Aw+pMQ0lI7Amv+6/6XB/7DXx9Ngj1E6X0jP1f87iW/ZeQcd+Vc5juoV1vOILJfRS4a0ONTdjbHsc2t1lmz/SfZPQYtHFFxxqftLmvvLG+s5gIYX7f0jq2u9zWb/oqV0+k/wDquSq+hX/VH5ECSf4KZwJUGCMhx8WN/K9E1Q2z9od/Ub+V6CmhdTRb14ssrDvUwXMsJggsNjf0f7zd3v3fvq1Ti4+M+uqhgYwNsIHOpdWXaulyg3Eu/a7814YavQFNTgTvB3epY11e3Ztf7ff6n5n0FYdH2hn9R/5a0lI+oZTMLDvy3AH0ay8N43OH0Gf23+xZ2J0trPq9bRk7nW5dDnZTph5dY0m1u9hds+m/+bs/4T1FLrwOVZhdMaC5uTaLLwCR+hpIe/3D3N/SPqd/YWlkQaLf6jvyFSH04gP3zxH+7H0x/wC7R1ZsYGsa2S7aANztSYHLigdQyTiYj7a2h95hlFZ0DrXn06GH+T6jm73fmMVhsR/r4LNvudd1Cx7GOuq6VWX+mz6T8mxhc2pm7b+kqxHf1P16v/RqI7eejJjAJsi4wHFL/vf8OXobXTsFmDiMoDja/V1truX2OO6653O31LPdtVgAbeOyzB1q6QHdKzhJaCdtRA3bT+bkfmb/AHf8X/pFbzsqzEpZZVi3ZhLg1zKNm4Ag/pP01lLXM9v7yIFaBbKRkTImyTZS5DR6D9BwirHPWbbq9v7Mzq2vIbveysABxDPWf+n3tr/Pf7fVZWz+bWwkh//S9VQsn+a8fc3/AKpqKhZX8yfi3/qmpKYZzS7DuAB3bHFvxA3N/wCkEPLyn1sY3GYLsi7WqsuDRtljbL7Nf5mj1Gus/wC2/wA9Fy72UUPtex1gEAMYNznFx9NlbR/Le7b7/Z/pPYsyucHph6i9rMjPfWyuowBq8sqw8Jtn0/R9d9e53+l9TI/kJoBOQRG8xX2H/wBDVECM+OWoI2/eOP8A7n9b6mGKyhubfe91ltPSWPHr2ODjZdZutzLtjA1u+iv9WrdW1np+pk4tbPTrWl06myrFabmlt9xdde3du2vsJsfWHy7c2nd6LP5DFnUYjW1Y3Tf54Os35D3xL245a628t/SMdZldR2WWM9n8/etpSkjhAHyk+n+5H5Zf4fzrYkyuR/SJP2sLf5l/9V35Eqv5tn9UfkSt/mn/ANVyVf8ANs/qj8iYuZ9woM/pDv6jfyvU/D5obP6Q7+o38tiSkyE/+kM/qP8Ay1qVtrKan22GGVtLnGCYAG52jVRd1THcyzMrD3049dpDoIFmwVPd6M/T936L/jUQCTQ6qa2JtzOv5WUdrmYbRRUfzg73b3tEe33vyaX/ANRat381Z/VPh4FUPq/S+rpzH2OD7by62yxvDi9xO7l30vpq7lOtbjXGmv1rRW411Tt3u2nZX6jvaze7270/MfWQNoegf4CAwycxuJhOyXAv2NG2tsbnvdtZVSz/AIS61zKq/wCWodNw3YeCKrXepkP3WZNjYG+6w+pe5n0P8I7bT+5V6aq0Psz8rHruqNQwa67smmd4blWM/RY/qNGy37JXvuf/AC7cK9aolRDU320H7WWXpgIdZVOX/qOP/duPTjw+s/Z+pNhzTL8ncBB5sb9tfva389uyzf8Ay0a2oOx6iGZt01vJdXZ6LyXbTuuZ6uLtut+lV7P1f9J/R/oLSCbWPknccybMiSNituN/KB4er/vnPLA3QtyWQHODbX72Ejb+kdZvt27J210+p+l3/wAxb6f6LTQck/q7+ePBGQsnfVafKn//0/VVm5GKaHW52RkWW1sBLKwCdjXO3WxXX/Pe3+b/AEe9aSr5gzjW37E6ttgd7vVBILYPGz87dtSU1Ktt+W3Ly3VMdSXtoYH/AJrj7Xva521tmxv+uxVfXpfZ06l72+liVOy7tR9Jjfs+PW6fb9K2+7/jcVbVTDXU1hcXloAL3akx+c7+sqLuv9MZbZTY9zLKnFjmGt5JILm7mBjXb2ez+calH0y4hvwyj/j/AKSp3KQldcIMQP73qQ9NspNr8iyyoANbj1HcC79G532p24u3e/Kc+v8A9B1o/aMbT9Mz/OCysvrdV9ZODktrbWwuyC6t+9rSWND6jt9P1W7/AGsd/OKwzr/Sm1sHrusMAbjW8F2oY5/823+3sSPStgAB5RQBQAHRsZP7Pyse3GyH12UXsdVbWXCHMf8Ao7GGD+c1yWO7p+NTVjUWV100sbXVWHiGtYNrGN1/NY1D/bOLYXV4wdfeW7qmAFofLG3si5w9Nm6t/wCf+k/4NPcc3MqqfhWtpoub+kcR+lbP51X0697f5X56SWx9oxpH6Zn+c1NS+t97zW4PGxoJaQe9n7qOkkpSo9T6c/MxvQpsbjmQdxZvGj2XfQ3Vt/nKvfuV5JEEggjcGwpoMzKKmtrrtrcxhbSAzdYWmfTY2xzN236O33q1GRrqzy0P96Dk03VML+n11NvssabS4RLZ/SO9uzdZt/lIAu6+QCcfHaQPcBY4yZH0HbGfyva5v/XP3ApLgYV2HR6e5llr3Gy+4tLTZY7+ctcJP/W2f4Kn06f8GrEZHiz7iqZt65tDvQpDtz/0e8kbQWeluthu32+q721P/wAGz/hExu6+N4+z45MDY4WOImPdulrXO9239z/CfyEgKTKRkSTqS2rbzjs332VVsmNzjtE+HuKjTkuuc+utzXPrDd/teG+6djmOd7Xtdt/MVW79r3MsqvxMeyt1ZLBuLx6jT7Q9lgq3Ntnez/RbP5xEx39ZDqm31UCvQWGsmRAO4hjvbs3fy3pIbT2XvYWEsAOhMH+9GSSSU//U9My+o4eG5rcmwV7mOs3H6Iaw1se5zvot991TVC/q/T8drXXW7GuuZj7iDAssa26trtPa3037t/0EHqttTbqK78jGposa8XU5IBNjfZ/N73Nb7HfTWfi5ZsaaHdUw7Lw4NGxjQXTU9rdzT/PbX20u30trZ+h+z/6VJToO+sXRGvax2ZXLpPOggbvf/o/7am7r3R2VC12XU2s7oeXaHZs9Tb+9s9WtZtWa/wBRj7eoYTsd1mz+ZIlrTvftuNnp/Q/R+t/M+v8Ao/5z9EmosLg+sdSwWixr3NGPWwEvdssN5a91vrfoWP3/AOm3v/4P0Up1H9a6Uy70DlV+ru2FgMkGN7t37rWM973/AJih+3+ivYZyWbSS1wM6aub7xHta7Z+eswZt3qWvHU8EGvRv6OSQR7rHe/1P0e7Y7bv/AD/V/wBGifabrRVXj9SwDePpBlYduc94bj7WNsc5jGt9L/rvp+/Ykp0B1vojG+oMqlrXuc0ukAF7AwPDnfvMa+pNj9c6NY5tFGTWSSGVsb3n/Rj91v0X/wCjWU/PscN7OqdP2VgveWVTMen6jW1+o91lG0/pban/AKP+b/4auxVlsNb639RxS42VNqtqaGBrnOcXUiw+pW+2+uqxjdnvYkput+sPRXs3jLriCeYMAkcf2VYxeo4OY5zcW9lrmAFwaZIBkf8AVN2rGGQ5tYrf1XAF7C5j37GcAV1jc31PZey6uzf/AIP3/wAytHo+Qy5lrTk05N1b/eaGhrWtP821o925n0v0m76fqJKbA6jhG92P6rRc1xr9MyHFwaLnNY0/zm2p2/8ARoZ6x01pYH3ivfWy0GwOYAy0WGlz3WNb6e/0Lf5xUMg22dQ1+wNppukPeT6wBaxuUPez0vUtrPpWf8E+tCLuolo/R9LAY1o9WTsBBc5jGfne39JYz2bElOr+2Ol+6cuobJLpeBEaO5SPV+ltjflVMJiGvcGu1G5o9N+1+7X6KzmvDniu09Nlrm74af5lpfRkxu9rHtspZSz/AAfs/Sf4NQe7Me57qm9MyGPcTWzdLjtHpVVM9rGPe57ame9/s3/1ElOkzrfSXisty6iLRLPcB+7oZ+i/9Iz2O96evrPSrWF9eXU4BrnmHgna0bnu2/SWdXe8V13E9NaTcwPc0kDY/dW7Z7f5+z/Bf4NJrM2qi4P/AGZvdAqfq1pa5zmP9Ru38zHd6dbf8J/hP+ESnSZ1jpT2Nsbl1FryGg7x9JwdYxjv3H7K3+x6Z3Weks3bsymWOLXje0kOB2OaWg7va9Zpf1Kpk7OlgmwObtc4a7tnre7Z76f0ijjm4M2P/Zbm1h4dqZ3gWNa50t2t35A/Se3/AEuxJTqnq/TNgeMmtwLmsaGO3Eufu9OtrGbnOsfsfsrVtZ2Lbi0s251uN9p1vdsLQ1rA5zKXt3BrtjG+3e/+WtJJT//V9C6ta2q2gvdita9tjQMkEuLyG+j6cfRr9b0/XVCnJyAG113dOdkWe6gsGol9frO/wbf0VDv0bP52z/rdiu9Z3erRtGDuiz+nH3R7P5jT6P8Apv8Arazw7JN9baG9JbcZJewgkbRqzj1P0tHq/RZ/NeokpRsyX0kDL6SWlkVuEHaYAc9pnY7c73fzez2fzaNvpqz/AFcfJ6c2ix49StzmbtgbSz9GWNY71G+nez3v2bPRQGvrbW8tr6O8lv6MVubAcXVts37gzdWzHO97vp/zf6JTpFf2mo5B6R9nO0FrI3AgSHU7h7nP/V2pKY7sg1A/aulta4vAsgaj3fo2Od7Hsr9f0/8Az56nqWIj8m5npWi7pY/NsthxAtabLi31Gu21M9Fm7fZ/hVoH/m/6Ve77H6Un0p9PbM+70/zd25NW36usxQ1n2Q4wcYk1lm/Z+86f0nof+A/yElNG42MrY039LbYHlurQxpZtrfXVtc6130Lt1n/B20f9cY3OdTYxuV0oOGtT2ADa9vp7XEPfa3cyt97f+2VpWt6H65dd9m9YFwduLJ3EUepvaf8ACem3D+l7/T9BQY36utbDfskbiRrWfcXOd3/4Tekpn02qu7DZddXjvfbL91LCGEEna79L7/cz6SuV001kmtjWF0SWgCY44TUeh6LPs+30do9P042bfzdmz27URJTi5OO+zN2ZGLiZGNZcd7n7d7GbKtjnNfHqW2XMb/Y9BBycJjaGGnG6c2tu6y9tjWtrOxwOPYHNa5zNuO/I/SfmWP8A3FX6rd0sZF7ben4drt5Dn25NNbiYje5jzvYq4u6ZXLW9NwbAHANjLpDvaA0by9zt9rv9J+f/AIT+WlOhdil1LcR2P05m6pzKKpPtu3P3VUDaz2fy6/Rt9RNTjusi6vD6YbGgPx3MdMure1r3Ne2v2ekze7cz6Fv6L/hLW9Tpjs6Dh4QvbmBoeL6g8n1Tvv8ATb7/ALQy9tH6B/6R+RZ/IVqqn6rN37Th7jX+lh7D+j3M5l38z6vpf+BpKalWPc5rmjG6W6uxvqQCR6gYXbHu/R/Qa63bv/S/4T/TJHEvsprcMLp176y6utvtANIA+zDHdFmz6T6tn0P6iuPo+qxczecTdDAyXsmNjBRt93+h9H0v+tKH2f6putYGnD9af0e17A/cT+Ztdv37tuzakpruw8n0KWOwOml4DmOrsIa1rGmceutrWWtb6dj7vUVrHwul+lb9uxcGt1Toc2va5rWuDAz1N7GbHud/6LTWU/VP1rjYcP1TY719z659SZt9SXfzv76dtP1U9N+04fpkN9SHs2wHMczf7tv856aSmzZ07obgxtuPjENAZWHNZpuJcxjZ/ee/2q+sllP1ZGTSWHE+0RX6EOYX6D9X9Ibt30f5vYtZJT//2ThCSU0EIQAAAAAAVwAAAAEBAAAADwBBAGQAbwBiAGUAIABQAGgAbwB0AG8AcwBoAG8AcAAAABQAQQBkAG8AYgBlACAAUABoAG8AdABvAHMAaABvAHAAIAAyADAAMgAwAAAAAQA4QklNBAYAAAAAAAcABAAAAAEBAP/hDb1odHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDYuMC1jMDAyIDc5LjE2NDQ2MCwgMjAyMC8wNS8xMi0xNjowNDoxNyAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0RXZ0PSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VFdmVudCMiIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyIgeG1sbnM6cGhvdG9zaG9wPSJodHRwOi8vbnMuYWRvYmUuY29tL3Bob3Rvc2hvcC8xLjAvIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iIHhtcE1NOkRvY3VtZW50SUQ9ImFkb2JlOmRvY2lkOnBob3Rvc2hvcDo3Y2RlMDNmOC0xMGZlLTRhNDQtYmEwOS00NmI2MGUyZTkwY2IiIHhtcE1NOkluc3RhbmNlSUQ9InhtcC5paWQ6MTVmMTE3ZjItZDBmOS0wOTQwLTg3NDgtZjg3MjlhMDZlYWYxIiB4bXBNTTpPcmlnaW5hbERvY3VtZW50SUQ9IjE3Nzg0NTQyMDBEMTJDMUM1NTI1RTM5RjAxRTQxNzFFIiBkYzpmb3JtYXQ9ImltYWdlL2pwZWciIHBob3Rvc2hvcDpDb2xvck1vZGU9IjMiIHBob3Rvc2hvcDpJQ0NQcm9maWxlPSIiIHhtcDpDcmVhdGVEYXRlPSIyMDIwLTA3LTA5VDA4OjAxOjMzKzAyOjAwIiB4bXA6TW9kaWZ5RGF0ZT0iMjAyMC0wNy0wOVQwODoyOTo1MCswMjowMCIgeG1wOk1ldGFkYXRhRGF0ZT0iMjAyMC0wNy0wOVQwODoyOTo1MCswMjowMCI+IDx4bXBNTTpIaXN0b3J5PiA8cmRmOlNlcT4gPHJkZjpsaSBzdEV2dDphY3Rpb249InNhdmVkIiBzdEV2dDppbnN0YW5jZUlEPSJ4bXAuaWlkOmYwOWUwOGZkLTJjN2MtZjU0ZC1iYzc0LWU0ZDI1ZDdiYzZlMiIgc3RFdnQ6d2hlbj0iMjAyMC0wNy0wOVQwODoyOTo1MCswMjowMCIgc3RFdnQ6c29mdHdhcmVBZ2VudD0iQWRvYmUgUGhvdG9zaG9wIDIxLjIgKFdpbmRvd3MpIiBzdEV2dDpjaGFuZ2VkPSIvIi8+IDxyZGY6bGkgc3RFdnQ6YWN0aW9uPSJzYXZlZCIgc3RFdnQ6aW5zdGFuY2VJRD0ieG1wLmlpZDoxNWYxMTdmMi1kMGY5LTA5NDAtODc0OC1mODcyOWEwNmVhZjEiIHN0RXZ0OndoZW49IjIwMjAtMDctMDlUMDg6Mjk6NTArMDI6MDAiIHN0RXZ0OnNvZnR3YXJlQWdlbnQ9IkFkb2JlIFBob3Rvc2hvcCAyMS4yIChXaW5kb3dzKSIgc3RFdnQ6Y2hhbmdlZD0iLyIvPiA8L3JkZjpTZXE+IDwveG1wTU06SGlzdG9yeT4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/uAA5BZG9iZQBkAAAAAAH/2wCEAAYEBAQFBAYFBQYJBgUGCQsIBgYICwwKCgsKCgwQDAwMDAwMEAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwBBwcHDQwNGBAQGBQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAVsB9AMBEQACEQEDEQH/3QAEAD//xAGiAAAABwEBAQEBAAAAAAAAAAAEBQMCBgEABwgJCgsBAAICAwEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAgEDAwIEAgYHAwQCBgJzAQIDEQQABSESMUFRBhNhInGBFDKRoQcVsUIjwVLR4TMWYvAkcoLxJUM0U5KismNzwjVEJ5OjszYXVGR0w9LiCCaDCQoYGYSURUaktFbTVSga8uPzxNTk9GV1hZWltcXV5fVmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9zhIWGh4iJiouMjY6PgpOUlZaXmJmam5ydnp+So6SlpqeoqaqrrK2ur6EQACAgECAwUFBAUGBAgDA20BAAIRAwQhEjFBBVETYSIGcYGRMqGx8BTB0eEjQhVSYnLxMyQ0Q4IWklMlomOywgdz0jXiRIMXVJMICQoYGSY2RRonZHRVN/Kjs8MoKdPj84SUpLTE1OT0ZXWFlaW1xdXl9UZWZnaGlqa2xtbm9kdXZ3eHl6e3x9fn9zhIWGh4iJiouMjY6Pg5SVlpeYmZqbnJ2en5KjpKWmp6ipqqusra6vr/2gAMAwEAAhEDEQA/APVOKuxV2KpN5o8zQ+X7KG6ltZ7sTXENuFt05BPWkWP1JHNEjjTn8TMf8lOTYqlF157upNRudP03TGmf1Z7HT7uSRUimv7aP1JYSv2kVVD8ZD8MjxOnwfAzKq/lG/wBTsfJ1pL5hW6/SCySRSi4CvcyM1wyRHjF8PxqU4qv2UxVMZ/MtnDE809teQwxgtJK9vIFVR1JNOgyGTIIRMpfTFry5Y44mUjUYjiXx+Yrd0V0tL1kYBkYW0hBB3BG2SjISAI5FlCQkARyLR8x24dUNne8mBKj6rL0XrvSnfCyX/p+L/livf+kaT+mKrI/MdvIvJbO+IBK/7yyjdTQ9R44q4eY7dmdVs74tGQGH1WXqRUdRvtiqlF5t02WKSaGG7mihZkleO2lbi6bMpAFeS9xlWLNHICYmwDw/50WnDnhlBMTxUTD/ADoqv+I4BII/qd7zYFgPq0vQEA70p3y1uU282WCxmRra9WJY2mZ2tZgBGv2mNV2p4faxVWXzDCyhhZ3pBFQfq0nQ/Rirf6fi/wCWK9/6RpP6YqsfzHbpx5Wd6C7cV/0aU1JBPYe2Kr/0/F/yxXv/AEjSf0xVanmO3csFs70lDxb/AEWUb0B8PfFXf4jt/UMf1O95heRH1WXoTTrSnbFWh5kt2Z1Fne1jIDj6rL3FfDfbwxVpfM1qwjYWd9SX+7P1Wbeo5eG2w/axVw8zWppSzvvicxj/AEWX7S1qOnt9r7OKut/M9ncQpPBa3kkMgDRuttJQg9xtiqp+n4v+WK9/6RpP6Yqsk8x28a8ns74CoFfqsp3JoOg8TiqWav8AmR5W0eR49VkuLJ0ga7cS203w26MEaU8Vb4FYgHIiVy4R9X/FOTi0eXJHjiPTfBxXGMeKuP8Aj/opjD5os5gpitbx1dFlRltpSrI/2WBpTfJmJBouMiLXWra4u1tfSngmdGdBPE8YYIQG4lh25LgVMMVdirsVaduCM1C3EE0AqTTwGKsHH5i39xaxra6My6nLc38QsrmdU4xabvIzyRiVRJIDGEjXmqvJ8cnwNiqI8tzeYtQ80vrcyt/h/UNMik02kv7tA0gkjDwUHG4aNyZn5SL9hEbFU9h171lZ4LC6liDugkVYwrGNihI5SBqcl7jFV/6Xn/6tl390P/VTFWn1qVI3kbTLwKilm+GLooqf92Yqth1ySaGOaPTbwxyqroSsQPFgGGxk264qv/S8/wD1bLv7of8Aqpiq2XW5o42c6VesF/ZRImY9tgJMVXnVpwafoy7+6H/qpirX6Xn/AOrZd/dD/wBVMVWvrUycf9xd6eTBPhWI0r3P7zZffFV36Xn/AOrZd/dD/wBVMVSDWvzP0LRtf0rQdQtb2PVdaPHT7dY0fl8XD4ishCCv82Z2n7Ny5sU8sa4MH1sTMAgd6etrUyyIn6LvTz5fEFiKjiK7n1Nq/s5gsl36Xn/6tl390P8A1UxV36Xn/wCrZd/dD/1UxVb+mpvVMf6LvahQ3LjFx3NKV9Tr7Yqu/S8//Vsu/uh/6qYq79Lz/wDVsu/uh/6qYqpxa+0ks0aabec4GCyVSICrKHFCZN/hYdMVVP0vP/1bLv7of+qmKu/S8/8A1bLv7of+qmKpPpv5gaXqWtahotpZXr6jpdPrsJjRQlTQfEZOLV/yTlUMsZSMRzi5ubs/LiwwzSrgzfR/OTj9Lz/9Wy7+6H/qplrhNNrMyqzHTLyigk7Q9t/9+YqjbS5jurWG5jBEc6LIgYUPFwGFR474qq4q7FXYq//Q9U4q7FXYql3mHRY9Z0qTT5JWhSSSGQyIAWBgmSYDfb4jHxxVKbTyQlv5h/Sf12RrJLmfULfTSq8Uu7qP0pZDJ9pk4s7JHT4Hkb4vscVU117+4tP+Yy2/5OriqG86MR5V1Y/8u0n6swO0/wDFsn9STre2f8Uyf8LkmWmilhbDwhj/AOIjMnAPRH+qHM0wrHH+rH7lc/bH05c3LsVWx/Z+k4q0erfhiqQ6BFDb6lrtvFceo5uluJYQhUxGaMGlSaPy48vhzX6OMYzyRB34+OUf5niD+d/E6vQQhDLmjGXEfE8Sca/u/Fj/ALJguo/nLqGnXMzXNvbyW1nrer6feRRcvX+paXYPeB0VnA9ZuKci37vg/wCzy5ZsHaK97+eVhYzSWup6NcQyppc2o3Fus9vM8bw2wuzayqrcUle2dHWrcfi/k+PFUYn51adFPdWd/pVxZX9g6xXVs0sDhXe+gslVXRir/wC9UU3w/s8k+3iqd+R/zDs/Nd5rFnHaSWFzo8/pSW9w6GZkLOqSmNSeCOY24Gro37L/AGsVZW/QfPFUm87a3d6F5O1rWbNYmu9Osp7m3WevpGSKMsgk4lW4ch8VDirzO2/5yBmtjdLq+jyLeQSQWsmmQjhNDdR2bXWoo7yN6cgi4f6L6f8AvQrp/lMqqO1z89ja3ktjp2hyzXLXx06yluJ4YopZILmCG6Ljl6kHBLqN4/VVebfD8P7SqYn86dMb0ktdMuLi7uWjjhtRJCrerNqUmlojEtxT99C0hY/7r/ysVdoP51aTrOu6VpEGm3aSX8ML3EjFGFtNcLMyROFJLp/o0oedP3at6f8AN8Cr0QVqDU9cVbgULCgUAADYDYfhiq/FVsnT6cVeX/mfYpfedvLGmlCy67Ya5pkyqwQsrWYkCcjWnJhmTp9FKcZ54y4fy3B9P1/vZ+ngn/DwOw0mvjjxnDIcXiThkuXqhDwvr4sf8fFGSf8A5R6omofl7opFx9ZmsrdbC7k48f8ASLM+jKKAkUDJ8Lftr8eDWG8hlt6/X6ZeJ9X9P+JxM+PgmY78z9UfD/6V/wAH9VkN3/x3tO/4w3P/ADKzHakyxV2KuxV2KsZvPIGk3EbCO4urWZrm6uhcwyKJQb8EXMY5Ky+nID/Lzj4q8bq68sVZBZ2lvZ2cFnbII7e2jSGGMVIVEAVV332UYqg/Lv8Axyk/4y3H/J98VTLFWm+yflirUf2B8h+rFV2KrZPsHFV2KuxVa/b5jFV2Nq8QnOm+YP8AnJ1EufrLSeWrFBp/pIhtjL6TSTes5PIMououAQfb+1nVxlPB2RUeEfmZ/vOL+94b4YeHH+Z+7lxOPscnue2n7Y+nOUchdirsVWj+8PyxVdirsVWJ9t/mP1DFV+KtMQoJPQbknwxV5d+SUlpqkvmjzMnqm61TUXWVnULEI42ZohEQSzfBIvqcuPxZg6KpGU/50nqPabjxeDpyY8OHFH+txz+vj/m/S9SzOeXWT/3En+qf1YqhNC/44mn/APMND/ybGKo7FXYq7FX/0fVOKuxV2KuxV2Kpbr39xaf8xlt/ydXFUJ53/wCUT1X/AJh2zA7U/wAWn/UdZ2z/AIpk/qSTax/3kg/4xJ/xEZl4foHuDnYP7uP9UKrfbX6csbV2KrY6cfpP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.