Physical chemistry, materials science, analytical chemistry and engineering greatly contributed to the increasing popularity of bioanalytical and biophysical applications of surface plasmon resonance (SPR) by providing novel materials, surface chemistry, instrumental concepts, and theory to further understand the plasmonic phenomenon and support innovation in SPR. This perspective article portrays the contemporary state of SPR-based techniques and establishes a list of challenges to be overcome for improving bioanalytical and biophysical applications of plasmonics and surface plasmon resonance.
A peptide self-assembled monolayer (SAM) was designed to bind His-tagged biomolecules for surface plasmon resonance (SPR) bioanalysis, which was applied for the determination of K(d) for small ligand screening against CD36. Nonspecific adsorption could be minimized using penta- and hexa-peptide monolayers. In particular, monolayers consisting of 3-mercaptopropionyl-leucinyl-histidinyl-aspartyl-leucinyl-histidinyl-aspartic acid (3-Mpa-LHDLHD) exhibited little (12 ng cm(-2)) nonspecific adsorption in crude serum. Modification of this peptide monolayer with Nα,Nα-bis(carboxymethyl)-L-lysine gave a surface competent for binding His-tagged proteins, as demonstrated using enzyme (human dihydrofolate reductase), protein/antibody and receptor (CD36) examples. Immobilization featured chelation of copper and the His-tagged protein by the peptide monolayer, which could be recycled by removing the copper using imidazole washes prior to reuse.
Ionic liquid self-assembled monolayers (SAM) were designed and applied for binding streptavidin, promoting affinity biosensing and enzyme activity on gold surfaces of sensors. The synthesis of 1-((+)-biotin)pentanamido)propyl)-3-(12-mercaptododecyl)-imidazolium bromide, a biotinylated ionic liquid (IL-biotin), which self-assembles on gold film, afforded streptavidin sensing with surface plasmon resonance (SPR). The IL-biotin-SAM efficiently formed a full streptavidin monolayer. The synthesis of 1-(carboxymethyl)-3-(mercaptododecyl)-imidazoliumbromide, a carboxylated IL (IL-COOH), was used to immobilize anti-IgG to create an affinity biosensor. The IL-COOH demonstrated efficient detection of IgG in the nanomolar concentration range, similar to the alkylthiols SAM and PEG. In addition, the IL-COOH demonstrated low fouling in crude serum, to a level equivalent to PEG. The IL-COOH was further modified with N,N'-bis (carboxymethyl)-l-lysine hydrate to bind copper ions and then, chelate histidine-tagged biomolecules. Human dihydrofolate reductase (hDHFR) was chelated to the modified IL-COOH. By monitoring enzyme activity in situ on the SPR sensor, it was revealed that the IL-COOH SAM improved the activity of hDHFR by 24% in comparison to classical SAM. Thereby, IL-SAM has been synthesized and successfully applied to three important biosensing schemes, demonstrating the advantages of this new class of monolayers.
A competitive binding assay based on localized surface plasmon resonance (LSPR) of folic acid-functionalized gold nanoparticles (FA-AuNPs) and human dihydrofolate reductase enzyme (hDHFR) was developed to detect nanomolar to micromolar concentrations of the widely applied anti-cancer drug, methotrexate (MTX). By the nature of the competitive assay for MTX, the LSPR shift from specific binding between FA-AuNPs and the free enzyme was inversely proportional to the concentration of MTX. In addition, the dynamic range for MTX was tuned from 10(-11) to 10(-6) M by varying the concentration of hDHFR from 1 to 100 nM. Inter-day reproducibility and recovery of MTX spiked in phosphate buffer saline (PBS) were excellent. Potential interferents such as FA, trimethoprim (TMP) and 4-amino-4-deoxy-N-methylpteroic acid (DAMPA) did not occur in the concentration range of interest for MTX. Clinical samples of human serum from patients undergoing MTX chemotherapy were analyzed following a simple solid-phase extraction step to isolate MTX from the serum matrix, with a limit of detection of 155 nM. Validation of the LSPR method was carried out in comparison to Fluorescence Polarization Immunoassay (FPIA), a commonly used method in clinical settings, and LC-MS/MS, a reference technique. The results of the LSPR competitive assay compared well to FPIA and LC-MS/MS, with a slope of 2.4 and 1.1, respectively, for the correlation plots. The method established herein is intended for therapeutic drug monitoring (TDM) of MTX levels in patients undergoing chemotherapy to ensure safety and efficacy of the treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.