Modified live vaccines (MLVs) based on genotype 1 strains, particularly C-strain, have been used to prevent and control classical swine fever virus (CSFV) worldwide. Nevertheless, a shift in the predominant CSFV strains circulating in the field from genotype 1 or 3 to genotype 2 is seen. Genotype 2 is genetically distant from the vaccine strains and was recently reported during outbreaks after vaccine failure; this has raised concerns that vaccination has influenced viral evolution. In Korea in 2016, there was an unexpected CSF outbreak in a MLV-vaccinated commercial pig herd. The causative CSFV strain was genetically distinct from previously isolated Korean strains but similar to recent Chinese strains exhibiting enhanced capacity to escape neutralization; this suggests the need for global cooperative research on the evolution of CSFV. We analysed global E2 sequences, using bioinformatics tools, revealing the evolutionary pathways of CSFV. Classical swine fever virus genotypes 1 and 2 experienced different degrees and patterns of evolutionary growth. Whereas genotype 1 stayed relatively conserved over time, the genetic diversity of genotype 2 has progressively expanded, with few fluctuations. It was determined that genotype 2 evolved under lower immune pressures and at a higher evolutionary rate than genotype 1. Further, several selected codons, under diversifying selection in genotype 1 but under purifying selection in genotype 2, correspond to antigenic determinants, which could lead to evasion of vaccine-induced immunity. Our findings provide evidence that evolutionary changes in CSFV are the result of the disproportionate usage of the CSF MLVs in endemic areas; this underscores the need to develop mitigation strategies to minimize the substantial risk associated with the emergence of vaccine-escaping mutants.
Epidemiological characteristics of swine pulmonary Pneumocystis (P.) carinii and concurrent infections were surveyed on Jeju Island, Korea, within a designated period in 172 pigs submitted from 54 farms to the Department of Veterinary Medicine, Jeju National University. The submitted cases were evaluated by histopathology, immunohistochemistry, PCR/RT-PCR, and bacteriology. P. carinii infection was confirmed in 39 (22.7%) of the 172 pigs. Histopathologically, the lungs had moderate to severe lymphohistioctyic interstitial pneumonia with variable numbers of fungal organisms within lesions. Furthermore, porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV-2) co-infection was a common phenomenon (12.8%, 20.5%, and 48.7% were positive for PRRS, PCV-2, or both, respectively, as determined by PCR/RT-PCR). Infection was much more concentrated during winter (December to March) and 53.8% of the infected pigs were 7- to 8-weeks old. In addition, three pigs showed co-infection with bacteria such as Pasteurella multocida and Streptococcus suis. The results of the present study suggest that the secondary P. carinii infection is common following primary viral infection in swine in Korea. They further suggest that co-infection of P. carinii might be enhanced by the virulence of primary pathogens or might have synergistic effects in the pigs with chronic wasting diseases.
Various new technologies have been applied for developing vaccines against various animal diseases. Virus-like particle (VLP) vaccine technology was used for manufacturing the porcine circovirus type 2 and RNA particle vaccines based on an alphavirus vector for porcine epidemic diarrhea (PED). Although VLP is classified as a killed-virus vaccine, because its structure is similar to the original virus, it can induce long-term and cell-mediated immunity. The RNA particle vaccine used a Venezuela equine encephalitis (VEE) virus gene as a vector. The VEE virus partial gene can be substituted with the PED virus spike gene. Recombinant vaccines can be produced by substitution of the target gene in the VEE vector. Both of these new vaccine technologies made it possible to control the infectious disease efficiently in a relatively short time.
Swine hepatitis E virus (HEV) is an emerging zoonotic pathogen due to its close genomic similarity to human HEV. The prevalence of swine HEV in the hepatic lesion of pigs from the Jeju Island was investigated by reverse transcriptase polymerase chain reaction (RT-PCR). In total, 40 pigs with hepatitis lesions were selected from 19 different farms, based on examination by microscopy. RT-PCR findings revealed swine HEV in 22 cases (55%), including 18 suckling pigs and 4 growing pigs. Several histopathological lesions, including multifocal lymphoplasmacytic hepatitis, portal inflammation, and focal hepatocellular necrosis, were observed in liver sections of swine HEV PCR-positive pigs. The present study suggests that the prevalence of swine HEV is very high in the pig population in Jeju Island, and that pigs are infected at early stages of growth (under 2 months of age). The high prevalence of swine HEV in pigs in Jeju Island and the ability of this virus to infect across species puts people with swine-associated occupations at possible risk of zoonotic infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.