Drosophila Crumbs (Crb) is required for apical-basal polarity and is an apical determinant in embryonic epithelia. Here, we describe properties of Crb that control the position and integrity of the photoreceptor adherens junction and photosensitive organ, or rhabdomere. In contrast to normal photoreceptor adherens junctions and rhabdomeres, which span the depth of the retina, adherens junctions and rhabdomeres of Crb-deficient photoreceptors initially accumulate at the top of the retina and fail to maintain their integrity as they stretch to the retinal floor. We show that Crb controls localization of the adherens junction through its intracellular domain containing a putative binding site for a protein 4.1 superfamily protein (FERM). Although loss of Crb or overexpression of the FERM binding domain causes mislocalization of adherens junctions, they do not result in a significant loss of photoreceptor polarity. Mutations in CRB1, a human homologue of crb, are associated with photoreceptor degeneration in retinitis pigmentosa 12 (RP12) and Leber congenital amaurosis (LCA). The intracellular domain of CRB1 behaves similarly to its Drosophila counterpart when overexpressed in the fly eye. Our studies may provide clues for mechanisms of photoreceptor degeneration in RP12 and LCA.
The formation and maintenance of cell polarity is essential for epithelial morphogenesis. Dpatj (Drosophila homolog of mammalian Patj) is a multi-PDZ domain protein that localizes to the apical cell membrane and forms a protein complex with cell polarity proteins, Crumbs (Crb) and Stardust (Sdt). Whereas Crb and Sdt are known to be required for the organization of adherens junctions (AJs) and rhabdomeres in differentiating photoreceptors, the in vivo function of Dpatj as a member of the Crb complex in developing eye has been unclear due to the lack of loss-of-function mutations specifically affecting the dpatj gene.
Establishment and maintenance of apical basal cell polarity are essential for epithelial morphogenesis and have been studied extensively using the Drosophila eye as a model system. Bazooka (Baz), a component of the Par-6 complex, plays important roles in cell polarity in diverse cell types including the photoreceptor cells. In ovarian follicle cells, localization of Baz at the apical region is regulated by Par-1 protein kinase. In contrast, Baz in photoreceptor cells is targeted to adherens junctions (AJs). To examine the regulatory pathways responsible for Baz localization in photoreceptor cells, we studied the effects of Par-1 on Baz localization in the pupal retina. Loss of Par-1 impairs the maintenance of AJ markers including Baz and apical polarity proteins of photoreceptor cells but not the establishment of cell polarity. In contrast, overexpression of Par-1 or Baz causes severe mislocalization of junctional and apical markers, resulting in abnormal cell polarity. However, flies with similar overexpression of kinase-inactive mutant Par-1 or unphosphorylatable mutant Baz protein show relatively normal photoreceptor development. These results suggest that dephosphorylation of Baz at the Par-1 phosphorylation sites is essential for proper Baz localization. We also show that the inhibition of protein phosphatase 2A (PP2A) mimics the polarity defects caused by Par-1 overexpression. Furthermore, Par-1 gain-of-function phenotypes are strongly enhanced by reduced PP2A function. Thus, we propose that antagonism between PP2A and Par-1 plays a key role in Baz localization at AJ in photoreceptor morphogenesis.
BackgroundMutations in spastin are the most common cause of hereditary spastin paraplegia, a neurodegenerative disease. In this study, the role of spastin was examined in Drosophila photoreceptor development.Methodology/Principal FindingsThe spastin mutation in developing pupal eyes causes a mild mislocalization of the apical membrane domain at the distal section, but the apical domain was dramatically reduced at the proximal section of the developing pupal eye. Since the rhabdomeres in developing pupal eyes grow from distal to proximal, this phenotype strongly suggests that spastin is required for apical domain maintenance during rhabdomere elongation. This role of spastin in apical domain modulation was further supported by spastin's gain-of-function phenotype. Spastin overexpression in photoreceptors caused the expansion of the apical membrane domain from apical to basolateral in the developing photoreceptor. Although the localizations of the apical domain and adherens junctions (AJs) were severely expanded, there were no defects in cell polarity.Conclusions/SignificanceThese results strongly suggest that spastin is essential for apical domain biogenesis during rhabdomere elongation in Drosophila photoreceptor morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.