A low-pressure plasma surface treatment of polymeric powders was carried out in a circulating fluidized bed (CFB) reactor (10 mm-I.D. × × × × × 800 mm-high) with CF 4 glow discharge. The effects of solid circulation rate, treatment time and radio frequency (rf) power of plasma on fluorination of high-density polyethylene (HDPE) powders have been determined. X-ray photoelectron spectroscopy (XPS) and the contact angle measurements were made to characterize the surfaces of powders. Solid holdup in the CFB plasma reactor mainly governs the stability of plasma glow and the surface property of the powders. Surface of HDPE powders is fluorinated into CHF-CH 2 , CHF-CHF and CF 2 groups. The extent of fluorination increases up to 54% with the treatment time and rf power. The atomic percent of surface fluorine content increases with the composite parameters [(W/FM)t] and [(W/FM)t]/m down to 2,500 GJ•s/kg-gas and 19.8 GJ•s/kg-solid, respectively, thereafter it remains constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.